AN
N W

W
3..:“.5..

N
.:...3:

.4._ W\ SR
AR

%
RN

WA AMALAE Y

NRRL Y A4
AT LA
i
G

\ A1 H e
AN
AL
:...: S
COTIIN NG

g
0

.::..:.,....,...
DU AR KE 4
AN
SEeveey

AL LGN
YA SRR

'y e,
AL u......_ LANN

.
N
AL

1
A T RS

dees

0
PO,
o\....
A

ance

res

orm

tectu
erf

i
P

Arch
an

ey

e
L LA

MO
ST,

Sy

e

"

NRROOCKS
"

Kartashev

i“

d Steven’

LAAL
i

& AAALL S
LRy WY

Aah N AT,
AL
o P TA

93]
LD

1

dyaad
) o'y

o oy
ANTYCCOOAA AL AN o
L AL A <200
-’

verp YL,
LU
ety

gyrvevey
UL A
v

o v
Sy

"
AR A

::.:

oy
oy

G
Q-.

. =
e

oy
AL Ak an #0

W

POWDERED METALS
TECHNOLOGY

NOYES DATA CORPORATION
Park Ridge, New Jersey London, England
1974

Copyright © 1974 by Noyes Dats Corporation
No part of this book may be reproduced in any form
without permission in writing from the Publisher.
Library of Congress Catalog Card Number: 74-82364
ISBN: 0-8155-0650-7
Printed in the United States

Published in the United States of America by
Noyes Data Corporation
Noyes Building, Park Ridge, New Jersey 07656

FOREWORD

The detailed, descriptive information in this book is based on U.S. patents since the late
1960s relating to powdered metals technology.

This book serves a double purpose in that it supplies detailed technical information and
can be used as a guide to the U.S. patent literature in this field. By indicating ali the in-
formation that is significant, and eliminating legal jargon and juristic phraseclogy, this
book presents an advanced, technically oriented review of modern methods of manufacture
and use of metals in powder form.

The LS. patent literature is the largest and most comprehensive collection of technical in-
formation in the world. There is more practical, commercial, timely process info..nation
assembled here than is available from any other source. The technical information ob-
tained fromn a patent is extremely reliable and comprehensive; sufficient information must
be included to avoid rejection for "insufficient disclosure.”" These patents include practi-
cally all of thoss issued on the subject in the USA during the period under review, there
has been no bias in the selection of patents for inclusion.

The patent literature covers a substantial amount of information not available in the jour-
nal literature. The patent literature is a prime source of basic commercially useful informa-
tion. This information is overlooked by thase who rely primarily on the periodical journal
literature. 1t is realized that there is a lag between & patent application on a new process
development and the granting of a patent, but it is felt that this may roughly paralle! or
even anticipate the lag in putting that development into commercial practice.

Many of these patents are being utilized commercially. Whether used or not, they offer
opportunities for technological transfer. Also, a major purpose of this book is to describe
the number of technicel possibilities available, which may open up protfitable areas of re-
search and development. The information contained in this book will allow you to estab-
lish a sound background before launching into research in this field.

Advanced composition and production methods developed by Noyes Data are employed
to bring our new durably bound books to you in a minimum of time. Special techniques
are used to close the gap between "manuscript” and "completed book." Industrial tech-
nology is progressing so rapidly that time-honored, conventional typesetting, binding and
shipping methods are no longer suitable. We have bypassed the delays in the conventional
book publishing cycle and provide the user with an effective and convenient means of re-
viewing up-to-date information in depth.

The Table of Contents is organizad in such a way as to serve as a subject index. Other
indexes by company, inventor and patent number help in providing easy access to the in-
formation contained in this book.

10.

1"
12

13

14

15.

16 Reasons Why the U.S. Patent Office Literature Is important to You —

The U.S. patent literature. is the largest and most comprehensive collection
of technical information in the world. There is more practical commercial
process information assembled here than is available from any other source.

The technical information obtained from the patent literature is extremely
comprehensive; sufficient information must be included to avoid rejection
for "insufficient disclosure.”

The patent literature is a prigne source of basic commercially utilizable in-
formation. This information s overieoked by those who rely primarily on
the periodical journal literature.

An important feature of the patent literature is that it can serve to avoid
duplication of research and development.

Peatents, uniike periodicai literature, are bound by definition to contain new
information, data and ideas.

it can serve as a source of new ideas in a differemt but related field, and may
be outside the patent protection offered the original invention.

Since claims are narrowly defined, much valuable information is included
that may be outside the legal protection afforded by the claims.

Patents discuss the difficulties associated with previous research, develop-
ment of production techniques, and offer @ specific method of overcoming
problems. This gives clues 1o current process information that has not been
published in periodicats or books.

Can aid in process design bv providing a sefection of alternate techmques.
A powerful research and engineering tool.

Obtain licenses — mary U.S. chemiical pstents have not been developad
commercially. !

Patents provide an excellent starting point for the next investigator,

frequently, innovations derived from research are first disclosed in the
patent literature, prior to coverage in the periodical literature.

Patents oHer a riiost valuable method of keeping abreau of latest tochu’ol-
ogies, serving an individual's own "current awareness” program.

Copies of U.S. patents are easily obtained from the U.S. Patent Officd at
50¢ a copy.

It is a creative source of ideas for those with imagination.

Introduction

CONCURRENCY/COMPLEXITY TRADE-OFFS
Trade-off of concurrency with complexity is associated with proliferation of the
following outlooks in designing current and future architectures.

-1, The use of fewer structural units, each of which is supposed ta be quite
complex.>* This approach has been implemented in the majonty of mduv;trml
supercomputers and multiprocessors.

2. The use of a great number of structural units each of which is supposed to be
sufficiently mmple This approach was 1mplemented in massively parallel
architectures.> .

The mterconnectlons between structural units can be direct as in message-passmg
architectures’® or reconfigurable®'® The degree of implemented reconﬁgui‘atlon is
also varied, from very thodest by recofifiguring ‘devices and registérs, to very
dramatic as is done in dynamic architectures that perform a total restructuring of
hardware resources under software control.®*?

Industrial (CRAY-type) Supercomputers and Multiprocessors
More detailed description of their evolutionary trends as weli as current statuses
of implementation of supercomputer architectures can be found in Chapters 1-3
of this book. Here, we will deal only with major highlights and theu' economic
outline justification.

The evolutionary development of industrial architectures is influenced by the
following factors. :

F1. Gradual and mostly quantitative changes in basic architectural characteristics
of a current industrial architecture are caused by economic demands on the
reuse of the entire software development for its predecessor.

F2. To be economically feasible and to satisfy user performance needs, an

industrial architecture of the current generation must take maximum cost -

~and speed advantage of the component technology that is used.

We can now trace the following evolution in Control Data/ETA archatec-
tures in terms of F1.
First generation - Second generation N Third generation
STAR-100 (1974) CYBER 205 (1981) ETA-10 (1986)

Similar evolution is true for the CRAY supercomputer family starting with the
CRAY-1 and ending with CRAY X-MP/4 and CRAY-2:

First generation R Second generation Third generation
CRAY-1 (1976) CRAY X-MP/2, X-MP/4 CRAY-Z CRAY-3
(1982) (1984)(1988-?)

As for the numerous minisupercomputers, their architectural evolution cannot be
traced yet, since we are witnessing proliferation of their first generations
manufactured mostly since 1984.

We can identify further evolutionary influences in terms of F2.

Xiii

xiv

Introduction

Cost opmmzatlon The major source’ “of the cost® 6ptflﬁl‘zatf(’ﬁf§f§ asﬁuﬁ%ed
with mihimization in the number of module typeﬁ)used for superc?)mputer design.

For instance, the STAR-100, built from SS¥'pasts; required 300 diffetent
module types each. of which was mapped onto a separate board. For the CYBER
205, this approach became infeasible economically because of a peeuliarity of LSI
cost considerations. To realize cost factors of LSI technology the totahggpmbet of
different chip types for CYBER -205 was reduced to 14 ﬁor sqalar umt and 11 for
vector and 1/ modyles;* ; \ NETTO n

Speed optimization is achleved by T aeqnyyr -

. teducu)g the, clock period; : g PRI TP
° expancfmg device parallelism ms;de each, gtructural um@, e ORI
» expanding the process congurrency by gradual ingrease (not very dsamgmc) in
the pumber, of structural units for ea(;h new generation of sugercomputers

CETIR LRI R 1 TEA L ‘
Massively Parallel Architectures (MPA)
Massively parallel architectures enjoy popularityir-both industtial‘and academic
communitiesi:: The miost representatnve amlntnemrbs mef,lmplemented in the
following: machines.. e RN RSP

o Massively Parallel Procéssor (MPP), developed Jomtly by Goodyear Aero-
space Corporation and NASA-Goddard Space Flight Center, was géhvered in
1982.1*" The MPP processor hae 16896 one-bit PEs arranged. in a 128

TOW X 132 column rectangular array.’ ; '

o. Connection Machine, developed at Thinking Machines Corporation is a
patallel . eomputing - machine having betweep- 16K "and 64K ‘1<bit processors
operating under the control of a smgle mbmlon stream broadcast .to all

. proeessors. .. e

. Hypemube Supercomputer, de‘eloped at Ca]tech w:th tbe first:. hardware
version, Cosmic Cube, having 64 nSdes.” Subsequent. versions were Mark II
and Mark III. The final 128-node version Mark 111 fp is to be completed in the
Summer of 1988." SEEEIUT

Note. Strictly speaking, Hypercube lies between the CRAY-type and MPA, since
it has a much. smatler humber of nodes than a classical MPA.and ‘vach node is a
quite complexmomputer, although pot as complex as a.typical. noge (ERAY-1 or
CYBER-205) in the latest generations of industrial supercomputers made from 8
to 16 such nodes. However, archltecturally, The Hypercube' prévides the
advantages and faces the problems of an MPA in view of the total privacy of each
node mgmory and limited communication capablhtles among: nodes achieved
only with the use of message-passing. . : AR

CONTROL FLOW VERSUS DATA FLOW

As “indicated above, a second factor that has influenced the evolution in
supercomputer architectures was the ‘use of two alternatlve models of computa-
tion. The first one, called control ﬂow represents ptogran\ as a seqhence of

Introduction

instructions in which sequentiality is maintained with the use of step operatiorns
and conditional and unconditional branches.

The second model, called data flow, also assumes that the program is a
sequence of operations. However, the order of execution is maintained by the
availability of operands, that is, by data flow. For this model, two operations are -
sequential only if they are data-dependent, that is, the second one consumes the
data produced by the first one.

Otherwise, they can be executed in parallel Thus, 1deally. as many
operations can be executed in parallel as there are available operand pairs.

Control-flow supercomputers implement both operation (fine-grain) and task
(coarse-grain) parallelism. Fine-grain parallelism is implemented in:

e array systems in which the same operation is per'formed over a set of different
data pairs; '

* pipelined systems, in which different phases of the same operation (process)
are performed in parallel over a set of different data pairs; and

* long instruction word archiiectures, whrch implement operatron parallehsm
with the use of very Iong instruction.’

Coarse-grain or ‘task parallehsm is implemented in multicomputers/
multiprocessors that run independent and asynchronous tasks.

By definition, data-flow supercomputers implement mostly fine-grain parallel-

ism. As for task parallelism, it is restricted to data-dependent tasks only within a
single data-gow program so that each task producer knows of all task consumers
that need its data. If two data-dependent tasks belong respectrveiy to two
independent programs, the task-producer may not know in advance of all
independent task-consumers that may need the produced data. Therefore, any
such task-consumer must access the needed data array itself rather than wait untii
it become available on ‘its node’s arcs. Handling all such cases requires
introduction of control flow of operation when the task-consumer initiates the
task-rendezvous process with an independent task-producer. Apparently, to
implement unrestricted task parallelism requires a hybrid supercomputpr that -
implements both data and control flow orders of execution.

Presently, no consensus exists as to which computational mode glves better
performance.

Proponents of control flow argue that it allows improved performance m
comparison to data-flow computation because’ ‘of beiter utilization of reSources
Also, for realistic programs, actual resources involved in data-flow computations
are much smaller than the entire complexrty of a data-flow supercomputer
leading to a considerable resource waste.?

The timé-overhead created with data-flow supereomputmg is assocrated with
(a) the necessity to control the movement of highly distributed data items rather
than program instructions; (b) the complexity of allocation algorithms because of
the requirement to take into account the locality of both instructions and.data; (c)
the excessive mampulatron with tags durmg each data entry into a program loop,

and so on. .

XVi

Introduction

On the other hand, in spite of these drawbacks, data-flow concept remains
an attractive architectural idea because of its promise to maximize the potential
instruction parallelism, which by definition is beyond the reach of control-ﬂow
architecture.

Apparently, a future high-performance supercomputer should be a hybrid
that can take advantage of both data-flow and control-flow modes of operation in
order to achieve maximal operatlon parallelism and process concurrency unmhnb-
ited by the problems encountered in both types of computation.

State-of-the-art research using prototypes of sufficient power will provide
excellent opportunities to alleviate all these problems and build such a

supercomputer.

Software Developments

The advent of supercomputing has tnggered the following developments in
software structures.

+ Massive efforts to parallelize execution and simplify development of complex
application programs through parallel algorithm design and component reuse

* Developing high-level languages suitable for parallel computation

* Developing parallel programming environments for supercomputers that ailow
parallel monitoring and servicing of concurrent application programs.

APPLICATION PROGRAMS ~
In the area of application programs, two major research explorations are taking

place aimed respectively at:

1. improving the performance of complex application program, and
2. reducing ‘the amount of time and effort spent on program development
processes.

ngram Performance
Program performance is optimized provided the following condmons apply.

¢ It is implemented with fast parallel processing algorithm.

-« It is optimally coded and efficiently mapped onto supercomputer architecture.

¢ Supercomputer architecture and its servicing software introduce minimal
delays in program computation and serving data needed by the program.

The major objective of parallel algorithm design is obtaining fast parallel-
processing algorithms for application processes. This is achieved by performing
equivalent transformations wthin the algorithm in order to make it suitable for
computation by synchronous and asynchronous parallel architectures used in
supercomputers. Synchronous parallel architectures are arrays and pipelines.
Asynchronous parallel architectures are multicomputers /multiprocessors.

Extraction of maximal performance from the array or pipeline requires
efficient parallelization for arrays and vectorization for pipelines of the respective

Introduction

data structures used in computations since, esseqtially, each, array, apd pxpe}me
execute om;,mstructlor; f&?‘?aﬂ" ata tlme,g o ey e e rIng
.Computation of an,.application algorlthm,,pﬁigg,mly. hy mul“gompme:/
mmnpromssor requires. ifs. paralis] decomposition mtq;vanqug Segments that can
run in parallel and asynchronously Therefore, current work in parallel algpnthm
design is directed at: -, N Clad s o o

* parallelization and vectorization of data structures to maize algcvﬂthms Suitible
for array,and pipeline computations; |, . . e it edps

* parallel decompasition of the application ngonthms ta. malgp thcm w;@b}e for
computation by mylticomputers/ multiprocassQrs.. © . o

LR

Also, parallel algorithin design’remains thé ‘atea of mterest fecr tv}éy sciéntlﬁc '

disciplines depeitdent on the form of algorithm-presentdtion. " * "o

If an algorithm is abstracted from specific software 1mplemenwﬁon its
parallel design methddo‘logy was and contitues 'fo bé "the ‘doihm of
computational sciences. On the other’ hand, when it 1§’presented s’ high-level
program, - its- parallel design ‘becomies’ an -object of interest for software ‘design
directed at‘developinig program and data decomposltxéns ‘that not“only perform
program’ and ‘data parallelization and dath vectotization, but efficiently ‘itiap the
progrifit’ dfid data ontd’ supercompitet’ architectires. - These software deSIgn
techniques are sometimes at'mbuted to compiler meﬂiodologles Hi
PRLI L
Parallelization and Vectori'atmn ef Data Structurgs -
Parallehzatlon and vectorization of data’ struqtures !s understboq as deOWS
Given an n-element data array: " '

1. Assign one data element per each PE for arfay. (parallel) data su'ucture or k
- data elements per PE for pipeline (vectorized) data structure. -, il

2. Perform such equivalent transformations within an application- algorithm that
it can concurrently control the array of n PEs for anay pmt:essmg or plpchne
of p PEs for pipeline processing, where p=n/k." AN ,

The difference between array and pipeline processmg is as follows. Eac‘h engaged
PE in an array made of n PEs at any moment of time ¢xecutes the same operatnon
“over a different pair of operands; in a pipeline of p PEs, organized mtd p stages
¢ach PE conceived as the ith stage of the pipeline (i=1, ..., p) and, a531gned a
separate pair of operands, executes the ith phase of the prOCess (op¢ratlon)
assigned to the entire pipeline.

4 (‘onsequently, both modes of operatlon xmpi) data paralléhsm which ' is
applied at each step of the same operation for arrays or different phases of the
same Pperatxc:u {process) tor pipelines. Thus, array and pnpelme’ modes of
operation reqmre development of data-paral!el a!gonthms that at each sfep dea}
with an array of different operand palrs To become effcient, a data-parallel
algouthm must be capable of processing an n-element array in l&ss than n steps,
otherwise there is no justification for introducing n PEs for array pi‘ocessmg orp
PEs for pipeline processing. The typical speed 1mpmvemfm* for an‘ay procpssmg,

i

xviit

Introduction

is log, n; that is, instead of n steps required by serial processing of n data
elements, the same algorithm is executed in log, n steps. For a fully engaged
pipeline, an n-element array is processéd in p + k steps, where p is the number of
pipeline stages, and k is the number of operands (or operand pairs) assigned to
each stage.

The major and most obvious drawbacks of data-parallel computations as a
class are as follows.

D1. By nature, they are not universal but dedicated. Thus, for all non-data-.
- parallel applications, array and pipeline supercomputers show inferior
performance, although a significant body of research work is now aimed at
broadening the class of data-parallel applications, that is, finding the parallel
method of execution for algorithms that used to be regarded as entirely
serial.'®?

D2. Limited communication capabilities among different PEs. For arrays, the
most typical connection among PEs is a grid, which may prove to be in-
sufficient for nongrid type data exchanges. In all such cases, data words need
to be routed among PEs in order to reach their destination. This introduces
significant communication overhead and diminishes the benefits of speed-up
due to array processing as a concept. For pipelines, the communication
capabilities among PEs are even more limited, totally precluding data
exchanges among arbitrarily selected PEs while the pipeline is working.

Parallel Decomposition of Application Algorithms

Here we will deal with this problem in the context of software design, assuming
that the algorithm has already been brought to a suitable parallel computational
form by available numerical methods.

In a supercomputer organized as multiprocessor/multicomputer if two
concurrent tasks are data-independent, their parallel computation presents no
problem. The problem arises if tasks are data-dependent, that is, if the first one
uses the computational data produced by the second one. Organization of parallel
computation among such tasks requires proper organization of such tasks,
rendezvous process, which features minimal synchronization delays caused by
interrupting the task-consumer if the requested data have not yet been produced
by the task-producer. . _

The major - thrust of the literature on software design in
parallelization/vectorization of data-dependent tasks, however, is directed at
concurrentization and vectorization of program loops which feature various types
of data dependencies during successive loop iterations (true dependence, anti-
dependence and output-dependence??).

Loop concurrentization means correct parallel computation of consecutive
loop iterations with minimal delays introduced by synchronization processes
aimed at passing data-dependent variables from one loop iteration to the next.

Loop vectorization means correct pipeline computation of consecutive loop
iterations with the use of vector instructions. Since many supercomputers have
vector instruction sets, and a limited number of processors;"4 loop vectorization
becomes an important factor of their speed-up.

irtroduction

FRETS B SR !""-;“.\:‘. M

Reducing Program Development Costs T
A supercomputmg program is usually very compfex, requmng ‘mafiy’tHanthours ‘of
program devélopment efforts. Therefore, considerable effort is now ‘expendéd to
réduce the athount of timie needéd by a program ‘development’ process. Ma;or

approaches here are (a) component reUSe and (b) softWare désrgn B
LR RHIN

Componcm Reuse i
This. congerns. qonstruquon of programs trom reug,able compogents (modules)
with or without the usg .of compgsition. principles, iThq,comppsmop approach
provrdes for some abstract initial representanop of 1gysed program, n;odules, then
the use of a composition techmque such as pararnptenzed grogrammmg, > the
Umx pipe mechanlsm,f‘ or special_ specrﬁcanon, tgchmques, ,10 copstruct a
complex program from reusable modules with the mterfaces specrﬁed by the
composition technique.

The second approach involyes. the creation of hbrarres of reused com-
ponems that do not need preliminary speclﬁcanons 19, be: connected to each
other.”’ _ . .

Soﬂwdr‘eDesign e ' TR e T e ;
This concetns the deVel‘opment of synthems 1echmques for autoimatic generauon
of an’application progtam. To bé most éfficient, these genét4tion techniquies
should apply to all of tht' software of the supercomputer. Accardingly, any target
program s first represented in an abstract and very hrgh-lebel notation reldated to
the problem domain.?®? The executable progrank is then’ generated ¥rom the
initial simplified representation using automatic synthesis téchhiques.

RS ;' i

PARALLEL PROGRAMMING LANGUAGES
The effect of supercomputmg op, high- -level lapguages rs vra twd approaches

o Theoretical approdch‘aimed at deveIOpmg an. ldeal hlgh level language ooncept
for: future 'supercompilters DR
* Practical approach aitied at improving emstmg programmmg languages and

creation of new programming languages for exnstmg mdustrral supercomputers
¥ Vo VE R v

Theoretlcal Approach
l"heoretlcal work in hrgh-level languages is. focused on the followmg

1. Raising the level of abstractlon by developing very high -level. Ianguages that
‘allow:

(a) programming an’ applrcatron wrth fewer and moére powerfal - language
constructs;

(b) efficient translatron of the resulting program into' & vanety of supérwmputer

architectates. °
‘2. Higher utiliZatron of 'coficurrency present in applic;nbtnon with the use of the

declarative versus the imperative style of programming.

Xix

XX

Introduction

Very High-Level Languages

The basic ideas behind very high-level languages lS to use declarative and
concurrent semantics based upon equational logic.*® This. implies that the
programs written in such languages are presented as sets of loglcal axioms and
computation is conceived as a set of rules derived from the equations by a
compilation process.’” The current state of computation is defined by substitution:
of the “pattern” (usually left-hand side of the expression) in place of a
replacement template that is a portion of the right-hand side of the expression
and which satisfies the logical conditions attached for such'a replacement. When
the pattern replaces the matching replacement template, the new result is
obtained by instantiating (activating) specific values of variable(s).

These substitutions can be applied concurrently to all the available
replacement spots, requiring no spec1ﬁc concurrency constructs at the language
level.

" Another feature of such languages is that by definition they are declarative
and not imperative. In the beginning, before the compilation process begins,
available sets of equations declare the problem that has to be solved. The task of
the compiler is to detect all the available parallelism by concurrent application of
substitution rules for all available replacement templates that instantiate com-
putations to specific values. Therefore, the only sequentiality that is introduced
by such languages is through data dependence, defined by the rules of
precedence present in equations. By contrast, -the practical supercomputer
languages of today are lmperanve in the sense that they explicitly specify the
sequence of commands; that is, not only do they say what to do but also when
and where to do it.*® This is the restriction that. reduces the concurrency that can
be extracted from high-level application programs.

Practical Approach

The practical approach (a) improves existing high-level’ languages by adding
parallel constructs that implement typical supercomputer operations, (b) develops
specific machmé—parallehsm languages that are well suited for available and’
popular supercomputers,® and (c) attempts to express problem-parallelis !

directly without reference to the hardware of the underlymg machine.*

Improving Existing High-Level Languages

Most high-level languages currently used to program supercomputers are conven-
tional scientific languages with added concurrent programming conétructs.34> of
these, FORTRAN is highly popular because FORTRAN comiputations are
numeric in nature and supercomputers are now mostly used for numeric
computations. Current work on FORTRAN modification is aimed at making
FORTRAN programs more suitable for array and pipeline computations.>*-’

Machine Parallelism Languages
A basic characteristic of such languages is their ability for direct expression of
machine parallelism.***" This allows generation of efficient code during the

Introduction

compilation stage. These languages provide suitable data representation as well as
algorithm construction features that encourage explicit expression of parallelism
within the algorithms.

Their major drawback is that the high-level programs generated with their
use are overly architecture dependent and are not portable from one-architecture
to another.

Direct Expression of Problem Parallelsim

The major objective of the third approach 4n supercomputer languages is to
provide for the direct and natural expression of process parallelism (a)
unhindered by improving or fixing an existing sequential language, and (b)
avoiding dependence of the language on the hardware with all its negative
consequences.”

The independence of such languages of the architecture is achieved via their
ability to give the user the right to define the maximal size of parallelism at
compile stage and to adjust the program to a smaller than maximal size at
execution time. Also, these languages are portable and equally suitable for vector
and array types of computation.*

However, their wide adoption by the user community is hindered by the fact
that existing industrial supercomputers, for economic reasons, tend to preserve the
software developed for earlier generations and thus mostly rely on the languages
(say, FORTRAN), in which this software has been written in the past, rather
than use new languages that overcome the bottlenecks of sequentiality and
dependence on the hardware for improving program performance.**

PARALLEL PROGRAMMING ENVIRONMENT
The creation of parallel programming environments is aimed at achieving the
following goals:

* parallel monitoring of computations,
* parallel servicing of computations.

These functions are performed by distributing operating systems, paraliel
compilers, and debuggers.

Operating Systems
Current research in operating systems is going in the following directions.

1. Standardization of the OS functions for improving the user’s access to
superccmputers with the use of industry standard user interface and file
systems networked with standard workstations.**

2. Equipping the OS with the techniques aimed at automatic schedulmg and
synchronization of multiple processes run on multiple and distributed
resources. '

3. Concurrent implementation of the OS functions with those of computations in

" order to exclude or minimize the OS overhead introduced into
computations. ***!

XXi

XXii

Intduction

Standardization of the OS Functions _
Currently, the most widely used standard OS in supercomputers is the UNIX OS,
which provides facilities for running programs and a file system for managing
information.*? A file system is organized as a tree in which each leaf is a file or a
directory. When a user turns on UNIX, ‘4 command interpreter accepts
commands from the terminal as requests to run program. Any such request
includes the program name, which accesses:the required file in a file system. If
this file exists and is executable, it is loaded as a program.

One of the most productive aspects of UNIX environment is a rich set of
software tools for serving programs. The UNIX software is written in the C
language. Since C is available on a variety of machines, C programs are portable
from one machine to another. Also, the UNIX system contains a variety of
facilities that encourage software reuse ranging from the library of standard
functions to basic architectural mechanisms called UNIX pipe which, acting as a
standard buffer interface, allows one user: program producer to generate data for
another uset program-consumer.

Applied iteratively, the UNIX pipe allows practlcal and effortless organiza-
tion of very complex hierarchical software systems that would be very difficult if
not impossible ta organize otherwise.

Distributed Hardware Operating System

The major drawback of standard OS Ssoftware of the Unix type is that it
introduces a considerable time overhead into program computation because
almost all program requests for service are accompanied by program interrupts
caused by interference of the OS. In a supercomputing environment, to reduce or
minimize thé OS overhead into computations requires hardware implementation
on distributed resources of scheduling and synchronization algorithms. This leads
to hardware implementation of basic OS functions, since this is an efficient way of
achieving concurrentization of the OS functions with those of computations.*>*'*?
The intention of the hardware-implemented OS is in absolute minimization of
program interrupts.

In a typical computational situation, most program interrupts originate from
the necessity for the OS to interfere in the task rendezvous process between two
programs. To perform process synchronization, the OS stops both the program-
consumer when it issues a request for rendezvous and the program-producer
when it accepts the rendezvous request.

Only following this synchronization stage, does the OS allow the rendezvous
to proceed, that is, to send data array to task-consumer memory domain.
However, interrupt of both task-producer and task-consumer can be avoided if
the task-rendezvous algorithm is implemented via hardware and can be activated
locally inside each PE. It allows avoidance of the following interrupt cases.

Case 1. Neither task-producer (TP) and task-consumer (TC) is inter-
“rupted if the data are produced before they are requested; that is, if the accept

Introduction

— -
Py

statement issued by the TP precedes the request for rendezvous issued by the
TC. The hardware OS organizes storage of the requested data in a particular
destination and informs TC through the mailbox system about the storage
location, requiring no interrupt for either task. - -

Cuse 2. TP is not mterrupted TC is mterrupted if the data are produced
after they are requested, that is, if the accept statement issued by the TP
follows in time the request for rendezvous issued by TC. The hardware OS again
uses the same mailbox system with storage location to allow the interrupted TC to
resume compulahons when the data produced by TP are ready.

Hence, for task-rendezvous, implementation of a hardware OS.-abofishes all

. interrupts of the task-producer and minimizes interrupts of task-consumer.

4

<~

‘» Parallel Sexvicing Software

On-going research in the area of parallel servicing software pursues the following
objecnves

* Automatic generation of compllatnon and debuggmg systems, given a descrip-
tion of supercomputer architecture

s Implementation of a comprehensive software portability concept that allows
creation of retargetable software $ystems and greatly improves software
productivity.

Both objectives will lead towards creation of comprehensive software environ-
ments for supercomputers through the use of:

« automatic synthesis applied to software generation, and
* reuse of basic software tools, which becomes possible through implementation
of the portable software concept.

However, in the supercomputer environment, both concepts ate applicable
only for stored application programs, since the time overhead they introduce
becomes that of program preprocessing aimed at its compilation and debugging,
which is not additive to program computation time. Thus; they may become
ingredients of standard OS, greatly enriching its repertoire. On the other hand,
dynamic or arriving programs require hardware implementation of compilation
systems-as a part of its OS hardware ainied at automatic scheduling and resource
allocation in real-time.:

Applications

Users are the major beneficiaries of these new developments in supercomputing.
There is a broadly formed consensus that supercomputing has already established
itself as the third mode of scientific research, that is,. that it has significantly
broadened the traditional base of scientific pursmts formerly restrlcted to (1)

' ‘experimentation and (2) theoretical analysis.*

XXiii

XXiv

Introduction

The advent of supercomputing in the area of applications was marked by the
following milestones.

Milestone 1

Milestone 2

Milestone 3

Milestone 4

Improved match between more precise modeling techniques and
high-performance scientific and industrial applications.

Cost-efficient coniputerization -of new_applications with very de-
manding performance requirements that were unthinkable targets
for attempted computerization in the past owing to their complexity
and timing demands. (For instance, many mission-critical computa-
tions in aerospace are characterized by continuing and dramatic
reduction in the time of computer responses to real-time input data
acquired from sensors because of the rapid progress in the systems

.aimed at detecting, intercepting, and homing each real-time target.

Similar timing limits are imposed by advanced nuclear and chemical
processes controlled by supercomputers; and so on.)

Comprehensive automation applied to complex application pro-
cesses which allows a much greater degree of exclusion of human
intefvention than it was possible to achieve in the past through the
use of: '

* intelligent expert systemg with automatic decision making process,
and

* automatic software systems made of complex application programs
and the parallel-programming environment in which they are run.

Creation of comprehensive numerical laboratories for: complex -

supercomputer applications with all the supporting mechanisms that

‘facilitate understanding of computational results via the use of:

* visual presentation of time-dependent multidimensional computa-

tional results and their effect on the behavior of modeled -

application processes; -

* time-dependent multidimensional simulations of complex applica-
tion processes; and

* ability to perform automatic comparison of numerical data with
those obtained through the use of laboratory experiments with
far-reaching consequences for improving the human understand-
ing of complex scientific application processes and aiding
scientific discovery.*

The following categories of users become principal beneficiaries of these

advances.

s Users of

important industrial applications such as high-speed aerodynamic

design, robotics, biotechnology, structural materials, electronic and optical
technologies, and so on

™

