The C Primer
P ————

Second Edition = o

Les Hancock
Morris Krieger

/3 5722/
23«

The C Primer

i R L RO T T AU L A LA S S
AT = S D el X K TP N
s IS B I T TR R S

Second Edition

Les Hancock

Morris Krieger

McGraw-Hill Book Company oLof
New York St Louis San Francisco Auckland '
Bogotda Hamburg Johannesburg London

Madrid Mexico Montreal New Delhi
Panama Paris S&o Paulo Singapore

Sydney Tokyo Toromto
§550201

- lem'y of Congress Cataloging-in-Publication Data
Hankeock, Les. '

The C primet. P ‘
Includes index. / 4
1. € (Computer program hnguage) I. Krieger, - -y

-~ Morris, date. If. Tite. s i ‘ z b 7 2 D

i QAT6.73.C15H36 1985 . 005 3 3 85-18224 Z /

$: ISENO-07'025995 X o) / / / (__/

i
B .‘?
+ . g

Copyright © 1986 by McGraw-Hill, Inc. Al rights reserved.
Printed in the United States of America. Except as permitted
under the United States Copyright Act of 1976, no part of this .
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without
the prior written permission of the publisher.

o+ 123456789 DOC/DOC 89876

ISBN 0-07-025995-X

This bouk was set by Coach House Pr»ss from troff copy
provided by the aurhors. The copy v+ generated by a Linotron 101
driven by a Pixel 80 computer.

Printed and bound by R. R. Donnelley & Sons C

gy,

Terms such as “man)’ “he)” or *his” appearing in e text of

this bock should be understood in a generic sense. e Y are

used solely to facititats communication by avoiding the grame-

matically awkward “man/wornan)’ “shie/hel or “hisher”
** types of construction,

y

.

o

Introduction

We’ve revised The C Primer so completely that this edition is essea-
tially a new book. The first edition consisted of thirteen chapters; this
revision contains eighteen. There were 100 complete program exam-
ples in the first egdition; this revision has 129, not counting the innumer-
able examples of code that illustrate particular points about C. Six of
the eighteen chapters (1€, 14, 1S, 16, 17 and 18) are entirely new.
Three chapters (5, 8 and 13) have been expanded to include informa-
tion omitted from the first edition, or to describe features newly added
to C. Most of the other chapters have been reworked soc thoroughly
that hardly a paragraph remains the same.

However, our goals haven’t changed, nor has our intended audience.
As we said in our first edition:

A primer is a book for beginners. This primer is intended for those
programmers who, while they may know something about program-
ming, Know rothing whatever about the C language; and the
amount of programming knowledge we do assume our readers have
is minimal. We assume they have access to a computer that runs
C. and that they know enough about programming to create source
code files using a system editor and then compile and run those
filcs.

For the most part-our revisions are based on reader feedback, much
of which came from introductory C classes given by one of us at B:il
Labs and Bellcore using The C Primer as the textbook. One effect of
our classroom experience was that we threw out our original chapi:r
on C pointers. Though we’re far from claiming to say the last word on .

ix

4
)

}

- X

THE C PRIMER

poirters, we believe our revised presentation in Chapters 10 and 16
provides a much more useful, pragmatic introduction.

This edition also includes an extended treatment of file /O, a topic
relegated to the last few pages of the original edition. As we discuss in
Chapters 11 and 17, the I/O functions are not, strictly speaking, a part
of the C language. They belong to a library of functions supplied with
the C compiler. When we began work on the book in 1980, we were
reluctant to deal with these library functions; they seemed more a part
of the UNIX* operating system than of the C language. Over the last
few years, however, dozens of C compilers have been written for use
in non-UNIX environments, and rearly every vendor has taken pains to
supply a library of functions tha: roflow the UNIX standard. In fact,
these functions are included in the C standard proposed by the Ameri-
can National Standards Institute. They've become a de facto part of
the language, and we feel we can now treat them as such.

Standards loom large in the mind of anyone who tries o write a
book on any computer language. When a language has been in use for
more than a year or two, it’s certain to exist in several versions,
depending on the machines it rtns on. Which compiler and which
machine should we assume our readers have? What we’ve dcne is
base our examples on the C compiler delivered with UNIX System V
for the DEC PDP-11/70. Throughout the book we refer to these as our
“reference compiler” and “reference computer.” At the same time,
we’ve tried to make our examples as plain as possible, to present C
code that will run on almost any installation. We have, in fact, tested
our examples on a variety of machines. The differences in output have
been insignificant. It is only when we discuss bit manipulation in
Chapters 14 and 15 that differences in machine output become impor-
tant, and we point these differences out as we come to them. Other-
wise, the reader’s understanding of the text and the examples shouldn’t
be affected at all by whatever C compiler and computer he is using.

Again, we'd like to acknowledge the help of our co-workers and stu-
dents at Bell Labs and Belicore. We would also like to thank Dr. Mel-
vin Ferentz, Director of Computing Services at The Rockefeller
University, for permission to use the computing facilities of that
university in preparing this text, and, for all their help, Dr. Banvir
Chaudhary and Armand Gazes, both of The Rockefeller University,
Tony Doblmaier, Distinguished MTS and recent retiree from Bellcere,
and Peter Dunn of P. S. Dunn Associates.

* UNIX is a trademark of AT&T Bell Laboratories.

iy
s

>

Introduction
Chapter'i. What C Is 1
What C Isn’t 5
Compiling C Programs 6
Chapter 2: How C Looks 12
How This Program Works - 13
C Functions 14
Function Definitions 14
Names, Names, Names 19
More on Compiling 22
Chapter 3. Primary Data Types 27
Integers 28
Integers Long, Integers Short 30
Integers, Unsigned 3
Long Constants 31
Characters 32
Alternative Number Systems 35
Escape Sequences 35
Numerical Escape Sequences 37
Floating Point Data 37
Double Precision Data 39
Initializing Variables 39
Chapter 4. Storage Classes 41
Automatic Variables 42
Register Variables 48
Static Variables b 49
External Variables 53
Chapter S. Operators . : 58 .
Arithmetic and Assignment Operators 58
.Precedence and Associativity ‘ 60

Ve

| Table: pf Contents",&

i e

Vi

-t

I'4E C PRIMER

Compound Assignment Operators

The Modulus Operator

Mixed Operands and Type Conversion
Casts i
Increment and Decrement Operators

Chapter 6. Control Structisres
Conditionad Execution 1 C Usirg the i
Looping in T Using the while

Chapter 7. Functions
Argumen's and Returned Values
* Arguments and Black Boxes
* The Declaration of Function Types

~ Chapter 8. The C Preprocessor

Simple Ltring Replacement
Macros With Arguments
File Inclusion

Undefining Macros
Conditional Compilation

Chapter 9. Arrays
Array Definitions
Array Notation
Internal Representation of Arvays
Multidimensional Arrays
String Arrays

Chapter 10. An Introduction to Pointers
Pointer Notation
Pointers and Arrays
Pointers and Strings
Pointers as Function Arguments
Pointer Arithmetic

Chapter 11. Input/Output and Library Functions
Terminal /O Routines
getchar () and putchar()
gets() and puts()
& Printf() and scanf()
%tn'ng—Handling Functions
strcat ()
stremp()
strepy ()
strien()
Converting Characters to Integers
Generalized Conversions with sprintf() and sscanf()
sprintf() |
sscanf()

Chapter 12. Control Structures 11
Looping in C Using the do-while
Looping in C Using the for
The Comma Operator

95
97

98

S 103

105
108
113
114
115

120
12¢

12¢
132

Conditional Execution in C Using the switch
goto

Chapter 13. Structures and Unions
Structure Declarations
Variables of Type struct
The Assignment of Valves to Structure Yariables
Structyre Variables and Arrays
Pointers to Structure Variables
Unions

Chapter 14, Operaors II

Bitwise Operators
One’s-Complement Operator
Bitwise Shift Operators
Bitwise AND Operator
Bitwise OR Operator
Bitwise XOR Operator

Casts and Type Casting

The sizeof Operator °

The Conditional Cperator

The printbits (; Function

Chapter 15. unum, Bit Fields, and Masks
The enum Data Type
Bit Fields
Masks

Chapter 16. Pointers to Functions
Functions of Type vcid
What's the Point of Function Fointers?

Chapter 17, File 'O
fopen{() and fciose()
getc{) and putc()
fgets() and fputs()
fprintf () and fscant()-
getw() and putw()
feof () and ferror(}
fseek ()
fread() and fwrite{}

Chapter 18. The Real Thing
Dynamic Storage Allacation
A Line-by-Line Sorting Program
Program Design
What Sort of Sort?
Firming Up the Design
Writing the Code

Index

TABLE OF CONTENTS vii

196
204

205
206
206
210
210
212
217

219
22

221
221
224
226

227

Chapter

1

What C Is |

C is a programming language developed at AT&T Bell Laboratories
around 1972. It was designed and written by one man, Dennis Ritchie,
who was then working closely with Ken Thompson on the UNIX
operating system. UNIX was conceived as a sort of workshop full of
tools for the software engineer, and C turned out to be the most basic
tool of all. Nearly every software tool supplied with UNIX, including
the C compiler and almost all of the operating system, is now written
in C. - Co ‘

In the mid-1970s UNIX spread throughout Bell Labs. It was widely
licensed to universities. Without any fuss, C began to replace the
more familiar languages available on UNIX. No one pushed C. It
wasn’t made the “official” Bell Labs language. Seemingly self-
propelled, without any advertisement, C’s reputation spread and its
pool of users grew. Ritchie seems to have been rather surprised that
so many programmers preferred C to old standbys like Fortran or PL/I,
or to new favorites like Pascal and APL. But that’s what happened.
Today there are dozens of C compilers available, many of them run-
ning on non-UNIX systems.

It’s entirely in character for C to make such a modest debut. - It
belongs to a well-established family of languages whose tradition
stresses low-key virtues: reliability, regularity, simplicity, ease of use.
The members of this family are often called “structured” languages,
since they’re well suited to structured programming, a discipline
intended to make programs easier to read and write. Structured pro-
gramming became something of an ideology in the 1970s, and other
languages hew to the party line more closely than C. The prize for

1

2 THE C PRIMER

purity is often given to Pascal, C’s pretty sister. C wasn’t meant to
win prizes; it was meant to be friendly, capable, and reliable. Homely
virtues these, but quite a few programmers who begin by falling in love
with Pascal end up happily married to C.
C’s direct ancestry is easy to trace. This is the line of descent:
R Algol 60
Designed by an international committee, 1960

-

CPL
(Combined Programming Language)
Cambridge and the University of London, 1963

@

BCPL
(Basic Combined Programming Language)
Martin Richards, Cambridge, 1967

»

B
Ken Thompson, Bell Labs, 1970

<>

C
Dennis Ritchie, Bell Labs, 1972

Though Algol appeared only a few years after Fortran, it’s a much
more sophisticated language, and for that reason has had enormous
influence on programming language design. Its authors paid a great
deal of attention to regularity of syntax, modular structure, and other
features we tend to think of as “modern.” Unfortunately, Algol never
really caught on in the United States, probably because it seemed too
abstract, too general. CPL was an attempt to bring Algol down to
earth—in its inventors’ words, to “retain contact . - . with the realities
- of an actual computer”*—a goal shared by C. Like Algol, CPL was
big, with a host of features which made it hard to learn and difficult to
implement. BCPL aimed to solve the problem by boiling CPL down to
its basic good features. B, written by Ken Thompson for an early
implemeéntation of UNIX, is a further simplification of CPL—and a very

* Barron, D.W., Buxton, J.N,, Hmley, D.F., Nixon, E., Strachey, C., “The Main
Features of CPL..” Computer Journal, Vol. 6, 1963, p. 134,

WHATCIS 3

spare language it is indeed, though suited for use on the hardware
available to Thompson. But both BCPL and B carried economy of
means so far that they became rather limited languages, useful only
when dealing with certain kinds of problems. Ritchie’s achievement in
C was to restore some of this lost generality, mainly by the cunning
use of data types. He managed to do this without sacrificing the sim-
plicity or “computer contact” that were the design goals of CPL.

Like BCPL and B, C has the coherence that’s often associated with
one-man languages, other well-known examples being Lisp, Pascal, and
APL. (Counterexamples include such many-headed monsters as PL/,
Algol 68, and Ada.) Following in his predecessors’ small-but-beautiful
footsteps, Ritchie was able to avoid the catastrophic complexity of
languages that try to be all things to all men. Yet his minimalist
approach didn’t rob C of its power. By following a few simple, regular
rules, C’s limited stock of parts can be put together to make more
complex parts, which can in turn be put together to form even more e-
laborate constructions. By way of comparison, think of the complex
organic molecules that can be assembled from a dozen different atoms,
or the symphonies that have been composed from the twelve notes of
the chromatic scale. Simple building blocks (atoms and notes) are
put together according to simple rules (of valency and harmony) .to
build more ¢laborate parts (radicals, chords) which are in turn used to
create complex organisms and music of great beauty.

This ability to build complex programs out of simple elements is C’s
main strength. If C had a coat of arms, its motto might be multum in
parvo: a let from a little.

Languages written by one man usually reﬂect their author’s. ﬁeld of
expertise. Dennis Ritchie’s field is systems software—computer
languages, operating: systems, program generators—and C is at its best
when used to implement tools of this kind. Even though there’s a
good deal of generality built into C, let’s be:clear: it’s not the language
of choice for every application. You can, if you want, use C for, writ-
ing everything from accounts receivable programs to video games: in
principle, almost any computer language can do, one way or another,
what any other language can do. And it is true that programs written
in C run fast and take little storage space. But while an analysis of
variance written in. C may run faster than one written in APL, the APL.
program will be up and running first.

So C’s special domain is systems software. Why is it so well suited
to that field? Two reasons. First, it’s a relatively low-level language
that lets you specify every detail in a program’s logic to achieve max-
imum computer efficiency. Second, it’s a relatively high-level language
that hides the details of the computer’s architecture, thus promoting

4 THE C PRIMER

programming efficiency. The key to this paradox is the word relative.
Relative to what? Or, asked another way, what is C’s place in the
world of programming languages?

We can answer that question by referring to this hierarchy:

True dialogue

Artificial intelligence “dialogues”
Command languages (as in operating systems)
- Problem-oriented languages
‘Machine-oriented languages
Assembly languages

Hardware

Reading from bottom to top, these categories go from the concrete to
the abstract, from the machine-oriented to the human-oriented, and,
more or less, from the past toward the future. The dots represent big
leaps, with many steps left out. Early ancestors of the computer, like
the Jacquard loom (1805) or Charles Babbage’s “analytical engine”
(1834), were programmed in hardware, and the day may come when
we program a machine by having a chat with it, & la HAL 9000—but
that certainly won't happen by the year 2001.

Assembly languages, which provide a fairly painless way for us to
work directly with & computer’s built-in instruction set, go back to the
first days of electronic computers. Since assembly languages force you

. .tp think in terms of the hardware and specify:every operation in the
machine’s terms—move these bits into this register and add them to
the bits in that other register, then place the result in memory at this
location, and so on—they’re very tedious to use, and errors are com-

" mon. The first high-level languages, like Fortran and Algol, were
created -as alternatives to assembly languages. They were much more
general, more abstract, allowing programmers to think in terms of the
problem at hand rather than in terms of the computer’s hardware.
Logical structure could be visibly imposed on the program. It’s the
difference between writing a = b + c and writing

PR =

, MATCIS 5

LHLD .c
PUSH H
POP B
LHLD b
DAD 8
SHLD .a

which is about the quickest way to say the same thing in the assembly
language of the 8080 computer chip.

But the early software designers may have Jumped too far up our
hierarchy of categories. Algol and Fortran are too . abstract for
systems-level work; they're problem-oriented languages, the sort we
use for solving problems in engineering or science or business. Pro-
grammers who wanted to write systems software still had to rely on
their machine’s assembler. After a few years of this drudgery some
systems people took a step back, or, in terms of our hierarchy, a step
down, and created the category of machine-oriented languages. As we
saw when we traced C’s genealogy, BCPL and B belong to this class
of very-low-level software tools. Such languages are excellent for
down-on-the-machine programming, but not much use for anything
else—they’re just too closely wedded to the computer. C is a step
above them, yet still a step below most problem-solvmn languages,
which is what we mean by saying that it’s both hlgh and low-level. It
fits into a very cozy. niche in the hierarchy, one that somehow feels
just right to many software engineers. It's close enough to the com-
puter to give the programmer great control over the details of his
program’s implementation, yet far enough away to ignore the details of
the hardware.

What C Isn’t

To begin with, it isn’t a language. We call it a language because every-
one eclse does, but the analogy between human speech and program-
ming isn’t very apt. C or any other “programming language” is a set of

" symbols whose possible combinations are precisely defined and can be
used to represent and transform numerically coded values. If that
makes C a language then musical notation is a language too, and so is
algebra. We know this metaphor has great poetic appeal—math is “the
language of science,” music is “the universal language”-—and we shali
speak of “the C language” throughout this book, but understand that
we’re taking poetic license. Fanciful analogies have a way of harden-
ing into laws of nature. -

6 THE C PRIMER

C isn’t a branch of mathematics either, though a C program will often
look like something out of an algebra text. Some new programmers
stay away from C because it looks like math to them, but that’s a
nonproblem. You can use C to the full without knowing anything more
arcane than a = (b + 1) / c. Because C is a relatively low-level
language it knows no higher math. It stays close to the computer,
which can handie only very simpie arithmetic. .

C isn’t a religion. Some programming languages are, complete with

a priesthood and a flock of disciples. So far C has escaped this kind of
silliness, probably because it was designed as a tool for use by profes-
sionals who understand that no tool can be perfect. '

C isn’t perfect. Everyone who works with a tool swears at it some-
times, and you’ll find specific criticisms of C scattered throughout this
book. We can sum them up in advance by saying that C trades some
elegance and some safety features for speed and ease of use. Once
you're familiar with the language you'll probably prefer it that way.
Since you’re not familiar with it yet, we’ll help you through the tricky
parts. - o ’

Compiling C Programs

If this intreduction -has done its job, you should be convinced by now
that the C language is "easily accessible: to human beings. Unfor-
tunately, it's not accessible to computers; not diréctly: a computer can
only execute the instructions built into it, instructions that program-
mers have to deal with at the assembly-language level. To put C into
practice we need a program that translates C-language instructions into
their machine-level equivalents. Such programs are called compilers. -.

In order to make use of any compiler it is first necessary to write a
program in the compiler’s language. When we write a program in the
C language, what we write is called source code. The compiler’s job is
to take our source code and translate it into instructions that our com-
puter can understand and execute. The compiler’s output is called exe-
cutable code. In other words, it’s our program in a form that can be
directly executed -by our computer,. Different makes of computers
require different versions of the C compiler, since each make wilt have
its own machine language. The source code remains always the same,
but the executable code will change for each computer our program
runs on. -

The source code passes through a number of intermediate stages
before it turns into executable code. We will assume the simplest pos-

WHATCIS 7

sible case: a small program that is complete in itself. The scenario
usually goes like this. A programmer logs onto his computer and, using
the system editor, writes a program, which he saves as a named file
called the source code file. He then sets the compilation process in
motion by typing the appropriate command—in UNIX it’s cc. This
action triggers a whole cascade of translation programs, each of which
takes the programmer’s source code, translates it into a lower-level
form, and passes that version along to the next translator. Here’s how
we might represent the cascade graphically: ‘

Write program: Editor
-
C source code
-

Compile program: C preprocessor
L 4
expanded C
source code
9

C compiler
-
assembly-language
code
-

Assembler
2
object code
Jfrom this program and
library files
-

Linker
-
executable code
-

Run program: Loader

The C preprocessor expands certain shorthand forms in the source
code, as we will describe in Chapter 8. Its output, the expanded
source code, is fed to the C compiler proper. What comes out of the
compiler is the original program translated into the computer’s assem-
bly language. The assembly language version is passed along to the

8 THE C PRIMER

system’s assembler, which translates it into a form called relocatable
object code. Object code is an intermediate form; it can’t be read by
the programmer and it can’t be run by the computer. So why bother
with it? Because all C programs must be linked with support routines
from the C run-time library. The linker performs this chore, linking all
_the necessary code together and converting it into an executable code

file. The programmer can run that code by giving it to the system’s

loader, something that’s done in UNIX when he types the file's name.

It’s a pretty long way, then, from writing a program to running it.
Luckily, we don’t really have to think much about the steps involved,
certainly not if we're beginners. The compilation process is hidden
away, at least in UNIX. We merely type cc plus the filename and wait
a few seconds, wondering why this supposedly fast machine is so slow.
At the end of those seconds we’re presented with a runnable program
which may or may not run the way we think it should. If it doesn’t,
we try to find the problem in the source code, use the editor to make a
change, and then compile it all over again. This happens often.

Let’s run through an example. But before we do, we as authors
must face up to a problem that all books on programming languages
encounter. In our examples, what kind of system should we assume
our readers have? The easiest way out, and the most'natura.l, is to
assume that they have exactly the same system we used to write our
examples: a 16-bit computer running under UNIX V. Throughout this
book we shall refer to this system as our “reference computer,” and to
the UNIX/ V version of C as our “reference compiler.” If you have
access to another version of UNIX, you will find only minor differences
between the examples in this book and those run on your computer. If
you're using a non-UNIX version of C, there may be important differ-
ences; you should refer to your user’s manual for details.

Now for the example. Suppose we want to write a program that
prints the words “Hell is filled with amateur musicians.” We first
invoke our system editor and write the following source code:

main ()

printf (" Hell is filled with amateur musicians.\n");

Let’s suppose we save this source code under the filename test.1.c.
All we need do to compile and execute the program on our reference
computer is enter the commands shown on the first two lines below:*

* In these and all the other progmmmmg examples in this book, all commands are exe-
cuted only when you press the camage-retum key after havmg entered the command.
What the user types will always be shown in boldface.

»o

WHATCIS 9

$ cc test1.1.c
$ a.out
Hall is filled with amateur musicians.

The first thing we should mention is that the prompt character on
our reference computer is $. This prompt must appear at the terminal
before we can enter any command. So. following the $, we enter the
compile command cc followed by the name of the source code file:

$ cc testi.l.c

Our filename must have the suffix .c. This is true of all C source code
filenames. If the suffix is missing, the program won't be compiled.

Assuming the compilation proceeds smoothly to its conclusion,” the
system prompt $ will again appear on the terminal. We can now exe-
cute the compiled code by typing a.out after the prompt:

$ a.out

and the computer will immediately run the program, displaying the sen-
tence at our terminal:

Hell is filled with amateur musicians.

If you have been following this procedure on your own machine, and
if you now examine your file directory, you will see that your directory
contains a new file, a.out. You can execute the file a.out any time you
wish by typing the command a.out after the system prompt.

The UNIX C compiler always puts its output into the file a.out. Of
course you can change the file's name to anything you like and run the
program by typing its new name instead.

This is the basic compilation procedure. It should work on every
standard UNIX installation just as we’'ve described it. Now for a few
. variations. Our program is very short, and all the source code can be
kept in a single file. But real-life C programs are much larger than
this. They usually consist of several source files, each of which has
been separately compiled and stored in memory under its own filename
uniil the programmer is ready to collect them into a complete program.
As an example of how such a set of files is compiled and saved, we’ll
use a variant of our previous program. This variant looks similar, but
it'’s not a complete C program—it doesn’t begin with main. (Don’t
worry about the form of these example programs; all will be explained
in due course):

