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Preface

The field of digital signal processing (DSP) has expanded rapidly over the past three
decades. During the late sixties and seventies, we witnessed the development of the
basic theory for digital filter design and the development of computationally efficient
algorithms for evaluating the Fourier transform, convolution, and correlation. During
the past two decades, we experienced an explosion in DSP applications spurred by
significant advances in digital computer technology and integrated-circuit fabrication.
In this period, the basic DSP theory has expanded to include parametric signal modeling,
with applications to power spectrum estimation and system modeling, adaptive signal
processing algorithms, multirate and multidimensional signal processing, and higher-
order statistical methods for signal processing.

With the expansion of basic DSP theory and the rapid growth in applications
(spurred by the development of fast and inexpensive digital signal processors), there
is a growing interest in advanced courses in DSP covering a variety of topics. This
book was written with the goal of satisfying, in part, the resulting need for textbooks
covering these advanced topics.

Most of the material contained in this book was first published in 1992 by the
Macmillan Publishing Company, ina book entitled Advanced Digital Signal Processing
(which went out of print in 1997). This new book differs from the earlier publication by
the inclusion of a new chapter (Chapter 7) on QRD-based fast adaptive filter algorithms,
and the deletion of a chapter on multirate signal processing. The other chapters have
remained essentially the same.

The major focus of this book is on algorithms for statistical signal processing.
Chapter 2 treats computationally efficient algorithms for convolution and for the compu-
tation of the discrete Fourier transform. Chapter 3 treats linear prediction and optimum

xi




xii Preface

Wiener filters; included in this chapter is a description of the Levinson-Durbin and Schur
algorithms. Chapter 4 considers the filter design problem based on the least-squares
method and describes several methods for solving least squares problems, including
the Givens transformation, the Householder transformation, and singular-value decom-
position. Chapter 5 treats single-channel adaptive filters based on the LMS algorithm
and on recursive least-squares algorithms. Chapter 6 describes computationally effi-
cient recursive least-squares algorithms for multichannel signals. Chapter 7 is focused
on the uses of signal flow graphs for deriving computationally efficient adaptive filter
algorithms based on the QR decomposition. Chapter 8 deals with power spectrum esti-
mation, including both parametric and nonparametric methods. Chapter 9 describes the
use of higher-order statistical methods for signal modeling and system identification.

Although the material in this book was written by six different authors, we have
tried very hard to maintain common notation throughout the book. We believe we
have succeeded in developing a coherent treatment of the major topics outlined in the
preceding overview. Chapter 1 provides an introduction to selected basic DSP material
that is typically found in a first-level DSP text, and also serves to establish some of the
notation used throughout the book.

In our treatment of the various topics covered herein, we generally assume that
the reader has had a prior course on the fundamentals of digital signal processing. The
fundamental topics assumed as background include the z-transform, the analysis and
characterization of discrete-time systems, the Fourier transform, the discrete Fourier
transform (DFT), and the design of FIR and IIR digital filters.

John G. Proakis
Charles M. Rader
Fuyun Ling
Chrysostomos L. Nikias
Marc Moonen

lan K. Proudler
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Introduction

In this chapter, we review some basic topics in digital signal processing (DSP) and,
in the process, establish notation that is used throughout the text. We begin with the
characterization of deterministic and random signals in Section 1.1. In Section 1.2,
we describe the characterization of linear time-invariant systems, in both the time and
frequency domains. Included in this treatment are definitions of basic properties of
systems, such as causality, stability, minimum phase, maximum phase, mixed phase,
all-pass, and bandpass. The response of linear time-invariant systems to random input
signals is also derived.

The third major topic of this chapter is concerned with the sampling of signals.
Conditions are derived for alias-free sampling of continuous-time signals. Also treated
in this section is the discrete Fourier transform (DFT) for finite duration sequences.

Linear filtering methods based on the use of the DFT make up the fourth major
topic of this chapter. The final topic of the chapter is a description of the complex cep-
strum of a signal. The use of the complex cepstrum in performing signal deconvolution
is also treated briefly.

The foregoing topics are usually covered in a first course in digital signal pro-
cessing. Consequently, our treatment is intended to serve as a brief review. Our choice
of review topics was influenced by the advanced topics treated in this book; we should
empbhasize. however, that many other important topics have been omitted. We assume
that the reader is familiar with z-transforms and Fourier transforms, and their use in
the analysis of linear time-invariant systems. We also assume that the reader is famil-
iar with filter design methods, and design tools and algorithms for both analog and
digital filters. The introductory texts by Mitra (1998), Oppenheim and Schafer (1989),



2 Introduction Chapter 1

and Proakis and Manolakis (1996) provide the necessary background material for the
topics treated in this book.

1.1 CHARACTERIZATION OF SIGNALS

A signal is defined as any physical quantity that varies with time, space, or any other
independent variable or variables. Mathematically, we describe a signal as a function
of one or more independent variables. If the signal is a function of a single independent
variable, the signal is said to be one-dimensional. On the other hand, a signal is M-
dimensional (multidimensional) if it is a function of M independent variables.

In some applications, signals are generated by multiple sources or multiple sen-
sors. Such signals can be represented in vector form, where each element of the vector is
a signal from a single source or a single sensor. The signal vector is called a multichannel
signal.

In this bock we deal mainly with one-dimensional, single-channel or multichan-
nel signals for which the independent variable is time. When the independent variable
is continuous, the signal is called a continuous-time signal or an analog signal. On the
other hand, when the independent variable is discrete, the signal is called a discrete-time

signal.

1.1.1 Deterministic Signals

Let us consider a deterministic continuous-time signal x(¢), which may be real- or
complex-valued. We assume that the signal has finite energy, defined as

o0
£=/ |lx(6) [ dt (1.1.1)
-0
Such a signal is represented in the frequency domain by its Fourier transform
oC
X(F) =/ x()e 2T dr (1.1.2)
where F is the frequency in cycles per second or hertz (Hz). From Parseval’s theorem
we have
oQ o0
5:/ |x(r)|2dr=/ IX(F)*dF (1.1.3)
—00 -0

The quantity | X (F)|? represents the distribution of signal energy as a function of
frequency and, hence, is called the energy density spectrum. It is denoted as

S (F) = |X(F))* (1.1.4)

S«x(F) may also be viewed as the Fourier transform of another function, r.(7), called
the autocorrelation function of the finite energy signal x(t), which is defined as

Fex (T) = /oo X*Ox(t + 1) dt (1.1.5)

—00
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Indeed, it easily follows that

Sxx(F) = / rx.r(T)e_jzerI dt (116)

—00
so that S, (F) and r,,(t) are a Fourier transform pair.

Similar relationships hold for discrete-time signals, which often are the result of
uniformly sampling continuous-time signals. To be specific, suppose that x(n) is a real
or complex-valued sequence, where n takes integer values. If x (n) is deterministic and
has finite energy, that is,

£= Z x(n))? (1.1.7)

H=—00

then x(n) has the frequency domain representation

>
X = Y x(ne ™ (1.1.8)
ot, equivalently,
X(f)= ) xtnye 7>/ (1.1.9)

where w = 27 f. The units for the frequency variables w and f are radians and cycles,
respectively. (Or, they are radians per sample interval and cycles per sample interval,
if the sequence x(n) is obtained by sampling a continuous-time signal x (f) at a rate of
F, = 1/ T samples per second, where 7 is the sample interval. Then, w = QT =2n FT
and f = FT).

We note that X (w) is periodic with period w, = 2m and X (f) is periodic with
period f, = 1. In fact, the Fourier transform relationship in (1.1.9) may be interpreted
as a Fourier series representation of the periodic function X (f), where the sequence
{x(n)} constitutes the set of Fourier coefficients. Thus,

1/2 .
x(n) = / XD

1 T ;
= X(w)e' " do (1.1.10)
21 J_»

This relationship may also be viewed as the inverse Fourier transform that yields the

sequence x(n) from X (f) or, equivalently, from X (w).
By applying Parseval’s theorem, the energy of the discrete-time sequence is also

given as

12
5=/ X(HPdS AL
~1/2

The quantity |X (f)|* represents the distribution of signal energy as a function of
frequency and, hence, is called the energy density spectrum of the discrete-time signal.
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It is denoted as

Se(f) = IX(HP (1.1.12)
The energy density spectrum Sy, (f) is related to the autocorrelation sequence
X
ra(m) =Y x"(m)x(n+m) (1.1.13)
n=-00

via the Fourier transform. That is,
%0
Sex(£) =Y raxlm)e™ 7" (1.1.14)
m=-00
Two elementary deterministic signals that we will use frequently are the unit
impulse and the unit step functions. In the continuous-time domain, the unit impulse
may be defined by the property

oC
/ 5(t)g()dr = g(0) (1.1.15)
00
where g(t) is an arbitrary function continuous at ¢ = 0. Hence, its area is
o
/ s()dt =1 (1.1.16)
—00
The unit step function is defined as
1, t>0
u(t)={0, 't 20 (1.1.17)
In discrete-time, the unit sample, or unit impulse sequence, is defined as
1, n=0
6(n)—{0’ n 20 (1.1.18)
The unit step sequence is denoted as u(rn) and defined as
1, n>0
u(n):{o, n <0 (1.1.19)

A continuous-time signal x(z) may be represented in general as the convolution
of itself with a unit impulse,

x(t) = / x(0)é(t —1)dr (1.1.20)
—oC
for all ¢. Similarly, a sequence x (n) may be represented as
oo
x(my= > x(k)s(n—k) (1.1.21)
k=—00

The expression in (1.1.21) is basically a convolution of the sequence x (n) with the unit
sample sequence §(n). Equivalently, (1.1.21) may be viewed as the superposition (sum

T e A it ammaresr el vt whiaTh e AafRnad Ao



Section 1.1 Characterization of Signals 5

over k) of unit sample sequences é(n — k), scaled in amplitude by the corresponding
values x (k) of the sequence x(n).

1.1.2 Random Signals, Correlation Functions,
and Power Spectra

In this section we provide a brief review of the characterization of random signals in
terms of statistical averages expressed in both the time and frequency domains. The
reader is assumed to have a background in probability theory and random processes
at least at the level given in the texts of Stark and Woods (1994), Leon-Garcia (1994),
Helstrom (1991), Peebles (1987), Papoulis (1984), and Davenport (1970).

Random Processes. Many physical phenomena encountered in nature are
best characterized in statistical terms. For example, meteorological phenomena such as
air temperature and air pressure fluctuate randomly as a function of time. Thermal noise
voltages generated in the resistors of an electronic device, such as a radio or television
receiver, are also randomly fluctuating phenomena. These are just a few examples of
random signals. Such signals are usually modeled as infinite-duration, infinite-energy
signals.

Suppose that we take the set of waveforms corresponding to the air temperatures
in different cities around the world. For each city there is a corresponding waveform
that is a function of time, as illustrated in Fig. 1.1. The set of all possible waveforms is
called an ensemble of time functions or, equivalently, a random process. The waveform
for the temperature in any particular city is a single realization or a sample function
of the random process. Similarly, the thermal noise voltage generated in a resistor 1s a
single realization or a sample function of the random process that consists of all noise
voltage waveforms generated by the set of all resistors.

The set (ensemble) of all possible waveforms of a random process is denoted as
X (t, S), where ¢ represents the time index and S represents the set (sample space) of
all possible sample functions. A single waveform in the ensemble is denoted by x(z, s).
Usually, we drop the variable s (or S) for notational convenience, so that the random
process is denoted as X (1) and a single realization is denoted as x (7).

Having defined a random process X (1) as an ensemble of sample functions, let us
consider the values of the process for any set of time instants t; > # > 13 > --- > I,

where n is any positive integer. In general, the samples X, = X (%), i =1,2,...,n,
are n random variables characterized statistically by their joint probability density
function (pdf), denoted as p(xy,, x,,, ..., X;,), and any n.

Stationary Random Process. Suppose that we have n samples of the random
process X(r) at t = ;,i = 1,2,...,n, and another set of n samples displaced in
time from the first set by an amount 7. Thus the second set of samples are X, .. =
X(@ +71),i=1,2,...,n asshownin Fig. 1.1. This second set of n random variables
is characterized by the joint probability density function p(X; 4+, - .., Xr,+¢). The joint
pdf’s of the two sets of random variables may or may not be identical. When they are




