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Preface

There are a great deal of books on introductcry analysis in print today,
many written by mathematicians of the first rank. The publication of
another such book therefore warrants a defense. I have taught analysis for
many years and have used a variety of fexts during this time. These books
were of excellent quality mathematically but did not satisfy the needs of the
students I was teaching. They wese written for mathematicians but not for
those who were first aspiring to attain that status. The desire to fill this gap
gave.rise to the writing of this book.

This book is intended to serve as a text for an introductory course in
analysis. Its readers will most likely be mathematics, science, or engineering
majors undertaking the last quarter of their undergraduate education. The
aim of a first course in analysis is to provide the student with a sound
foundation for analysis, to familiarize him with the kind of careful thinking
used in advanced mathematics, and to provide him with tools for further
work in it. The typical student we are dealing with has completed a
three-semester calculus course and possibly an introductory course in
differential equations. He may even have been exposed to a semester or two
of modern algebra. All this time his training has most likely been intuitive
with heuristics taking the place of proof. This may have been appropriate
for that stage of his development. However, once he enters the analysis
course he is subject to an abrupt change in the point of view and finds that
much more is demanded of him in the way of rigorous and sound
deductive thinking. In writing the book we have this student in mind. It is
intended to ease him into his next, more mature stage of mathematical
development. ‘

Throughout the text we adhere to the spirit of careful reasoning and rigor
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that the course demands. We deal with the problem of student adjustment
to the stricter standards of rigor demanded by slowing down the pace at
which topics are covered and by providing much more detail in the proofs
than is customary in most texts. Secondly, although the book contains its
share of abstract and general results, it concenigatgs on the specific and
concrete by applying these theorems to gain infgfimat“ion about some of the
important functions of analysis. Students are often presented and even have
proved for them theorems of great theoretical significance without being
given the opportunity of seeing them “in action” and applied in a non-
trivial way. In our opinion, good pedagogy in mathematics should give
substance to abstract and general results by demonstrating their power.

This book is concerned with real-valued functions of one real variable.
There is a chapter on complex numbers, but these play a secondary role in
the development of the maternial, since they are used mainly as computa-
tional aids to obtain results about trigonometric sums. :

For pedagogical reasons we avoid “slick” proofs and sacrifice brevity for
straighttorwardness.

The material is developed deductively from axioms for the real numbers.
The book is self-contained except for some theorems in finite sets (stated
without proof in Chapter II) and the last theorem in Chapter XIV. In the
main, any geometry that is included is there {or purposes of visualization
and illustration and is not part of the development. Very little is required
from the reader in the*way of backgrouwad. However, we hope that he has
the desire and ability to follow a deductive argument and is not afraid of
clemeantary algebraic manipulation. In short, we would like the reader to
possess some “mathematical maturity.” The book’s aim is to obtain al: its
results as logical consequences of the fifteen axioms for the real numbers
listed in Chapter 1. o

The material is presented sequentially in “theorem-proof—theorem” fash-
ion and is interspersed with definitions, examples, remarks, and problems.
Even if the reader does not solve all the problems, we expect him to read
each one and to understand the result contained in it. In many cases the
results cited in the problems are used as proofs of later theorems and
constitute part of the development. When the reader is asked, in a problem,
to prove a result which is used later, this usually involves paralieling work
already dore in the text.

Chapters are denoted by Roman numerals and are separated into sec-
tions. Results are referred to by labeling them with the chapter, section, and
the order in which they appear in the section. For example, Theorem X.6.2
refers to the second theorem of section 2 in Chapter X. When referring to a
result in the same chapter, the Roman numeral indicating the chapter is
omitted. Thus, in Chapter X, Theorem X.6.2 is referred to as Theorem 6.2.

We also mention a notational matter. The open interval with left end-
point @ and right endpoint b is written in the book as (a;b) using a
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semi-colon beiween a and b, rather than as (a,b). The latter symbol is
reserved for the ordered pair consisting of ¢ and b and we wish to avoid
confusion.

I owe a special debt of gratitude to my friend and former colleague
Professor Abe Shenitzer of York University in Ontario, Canada, for pa-
tiently reading through the manuscript and editing it for readability.

My son Joseph alsc deserves special thanks for reading mos{ of thé
material, pointing out errors where he saw them, and making some valuable
suggestions.

Thanks are due to Professors Eugene Levine and Ida Sussman, col-
leagues of mine at Adelphi University, and Professor Gerson Sparer of

. Pratt Institute, for reading different versions of the manuscript.

Ms. Maie Croner typed almost all of the manuscript. Her skill and
accuracy made the task of readying it for publication almost easy.

I am gratefei to the staff at Springer-Verlag for their conscientious and
careful production of the book.

To my wife Sylvia I give thanks for her patience through all the years the
book was in preparation.  }25uin

Adelphi University ' E. F.
Garden City, L. .. N, Y.
November, 1982
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CHAPTER I
Preliminaries

1. Sets

We think of a ser as a collection of objects viewed as a single entity. This
description should not be regarded as a definition of a set since in it “set” is
given in terms of “collection” and the latter is, in turn, in need of
definition. Let us rather cons1der the opemng sentence merely as a guide
for our intuition about sets."

The objects a set consists of are called its- members or its elements. When
S is a set and x is one of its members wé write x € §, and read this as

“x belongs to S” or as “x_ is a member of §” or as “x is an element of S.”

When x € § is false, we write x & S.

To define a set whose members can all be exhibited we list the members
and then put braces around the list. For example,

M = {Peano, Dedékind, Cantor, Weierstrass)

is a set of mathematicians. We have Cantor € M, but Dickens & M.

When a set theory is applied to a particular discipline in mathematics,
the elements of a set come from some fixed set called the domain of
discourse, say U. In plane geometry, for example, the domain of discourse is

the set of points in some plane. In analysis, the domain of discourse may be
R, the set of real numbers, or C, the set of complex numbers.

As an intuitive crutch, it may help to picture the domain of discourse U
as a rectangle in the plane of the page and a set § in this domain as a set of
points bounded by some simple closed curve in this rectangle (Fig. 1.1).
The figure suggests thatx € S,buty & S.

A singleton is a set consisting of exactly one member as in 4 = {b). We

have
x€{b} ifandonlyif x=0b. (1.n
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_Figure L1

We distinguish between the set {5} and its member 5. Thus, we write
b+ (b} for each 5. (1.2)

For example, 2 is a number, but {2} is a certain set of numbers.
= {a;b} is a set whose members are a and 5. We refer to it as the

unordered pair consisting of a and b.

Unfortunately, the sets usually dealt with in mathematics are such that
their members cannot all be exhibited. Therefore, we describe sets by
means of a property common to all their members. Let P(x) read “x has
property P.” The set B of elements having property P is written

B ={x|P(x)}. : (1.3)
This is read as “B is the set of all x such that x has property P.” For
example, the set R of real numbers will be written

R = {x|x is a real number). (1.4)

Here, P(x) is the sentence “x is a real number.” If U is the domain of
discourse, the set of members of U having property P is often written

. B={x&U|P(x)}. ' (1.5)

Tlns is read as “the set of all x belonging to U such that x has property P.”

A set 4 is called a subset of a set B and we write A C B, if and only if

each element of 4 is an clement of B, i.., if and only if x € 4 implies
x € B. We visuatize this in Fig. 1.2. Each part of this figure suggests that

U : U
(O

(@ - (b)
Figure 1.2
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A B A B
: O
(@) {b) ©
Figure 1.3

each element of 4 is an element of B; in (a) there are supposed to be
elements of B not in A, where as in (b) every element of B is also an
element of A. Thus, 4 C B holds also when 4 and B have the same
members. If 4 C B is false, we write A ¢ B.

A ¢ B is equivalent to “there exists x € 4 such that x ¢ B.” (156)

Each of the diagrams in Fig. 1.3 portrays the situation 4 ¢ B.
Sets A and B are called equal and we write 4 = B, if and only if both

ACB and BCA

hold. Thus, 4 = B, if and only if A and B have the same memberé.
When A4 and B are sets such that A C B but 4 # B, we call 4 a proper
subset of B and write

ACB.

This means that every element of A4 is an element of B, but there exists an
x € B such that x & 4.

*One should distinguish carefully between the notions “€” and “g.”
Thus, x € A means that x is an element of 4, while 4 C B means that
x € A implies x € B. The distinction is perhaps more noticeable when we
deny these relations. For example, x € 4 means x is not a member of A4,
whereas A ¢ B means that there exists x € 4 such that x & B. The distinc-
tion is important. The two relations have'different properties. Thus, if
A C Band B C C, then 4 C C (cf. Prob. 1.3). Because of this C is called a
transitive relation. On the other hand, the relation “&” is not transitive. For
consider

X=1, A={(1), and B={{l1}}.

Here B is a singleton set whose member is A4 = {1} (nothing prevents us
from having sets whose members are sets). We have X € 4 and 4 € B, but
X € B is false since this would imply X = {1} or 1 = {1} and this is false
(cf. (12)).

When x €4 and 4 C B, we write x € 4 C B. This clearly implies
x € B. Similarly, when A C Band BC C, we write A C B C C.

A set having no members is said to be empty. Such a set is also called 2
null set. Sometimes, in the course of a mathematical discussion, a set is
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defined by some property. When no elements exist which have this prop-
erty we call the set empty. An empty set is written @. We prove that for any
set 4 we have

gCA. (1.7
Were this false, i.e., @ ¢ A, there would exist x € @ such that x & A. This is
impossible since no x & @ exists.

Pros. 1.1. Prove: {a,b} = {a,b,a}.

“ProB. 1.2. Prove: If 4 is a set, then 4 C 4 and 4 = 4.

Pros. 1.3. Prove: If A C B C C,then A C C.

Pros. 1.4. Prove: If 4 and B are sets, then 4 = B implies B = A.

Pros. 1.5. When A4, B, and C are sets such that 4 = B and B = C, we write
A=B=C.Prove: A =B = C implies 4 = C.

ProB. 1.6. Prove: f ACBCCorACBCC,thend4CC.
Pros. 1.7. Prove: If 4 C @ for some set 4, then 4 = @ (cf. (1.7)).

Remark 1.1. Examine the sets 4 = {a,b} and B = {b,c}, where a, b, and ¢
are distinct. Clearly 4 ¢ B and B ¢ 4 hold. Thus, not all sets are related by
the subset relation.

2. The Set R of Real Numbers

We shall treat the real numbers axiomatically and list 15 axioms for them.
In this section we cite only 14 of the 15 axioms. The fifteenth axiom will be
called the completeness axiom and will be stated in Section 8.

The set R of real numbers is postulated to have the properties:

(D (Axiom 0,). There are at least two real numbers.

(II) (Axiom 0,). There is a relation called less than, written as <,
between real numbers such that if x and y are real numbers, then
exactly one of the following alternatives holds: Either (1) x = y or
@x<yor(By<ux;

-

PRoB. 2.1. Prove: If x is a real number, then x < x is false.

{We need not postulate the existence of a greater than relation between
real numbers since this relauon can be defmed in terms of the *“less than™
relation.) ' , W
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Def. 2.1. We define x > y to mean y < x, reading this as “x is greater than
y.” We can now reformulate Axiom 0, as

(II') (Axiom 03). If x and y are real numbers, then exactly one of the
following alternatives holds: Either (1) x =y or (2) x <y or (3)
X >y,

Def. 2.2. When x < y or x = y, we write x < .

ProB. 2.2. Prove: If x and y are real numbers such that x < y and x > p,
then x = y.

(IH) (Axiom 0;). If x, y and z are real numbers such that x < y and
y <z, then x < z.

Def. 23. When x < y and y < z both hold, we write x < y < z. Thus, by
Axiom 0;, x < y < z implies x < z. : :

Pros. 2.3. Prove: (a) Either of x <y <z or x < y <z imply x < z; (b)
x < y < z implies x < z.

[We now introduce postulates for addition and multiplication. The
lowercase Latin letters x, y, z appearing in the axioms below will
represent real numbers.]

(IV) (Axiom A,) (Closure for Addition). If x and y are real numbers,
there is a unique real number x + y called the sum of x and y.
(V) (Axiom A,) (Associativity for Addition)

(x+y)+z=x+(y+2); (2D

(VI) (Axiom A;) (Commutativity for Addition) '
x+y=y+x; (2.2)

[The next axiom relates addition to the “less than” relation in R.]

(VII) (Axiom 0,). x < y implies x + z < y + z.

ProB. 2.4. Prove: x <y and u <o imply x + u <y + v.

(VIII) (Axiem S). If x and y are real numbers, there is a real ¢ such that
y+c=ux
(IX) (Axiom M,) (Closure for Multiplication). If x and y are real nem-
bers, there is a real number xy (also written as x - y) called the
product of x and y;
(X) (Axiom M,) (Associativity for Multiplication)

(xp)z = x(yz). . (23)
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(XD (Axiom M,) (Commutativity for Multiplication)

Xy = yx. (2.4
(X1I) (Axiom D) (Distributive Law)
x(y+z)=xy+ xz. ‘ (2.35)

[The next axiom relates multiplication to the “less than™ relation in
R]

(X1} (Axism 05). x < y and u < v imply xu + yv > xv + yu.

(XIV) (Axiom Q). If x and y are real numbers, where z + y # z holds for
some real z, then there exists a real number ¢ such that yg = x.

Thus far, 14 axioms were cited. As mentioned earlier, the fifteenth and -
last one will be stated in Section 8.

The axioms indicate that addition and multiplication are binary opera-
tions, that is, we add and multiply two numbers at a time. We define
x + y + z and xyz by means of

x+y+z=(x+y)+z and xyz=(xy)z. {2.6)
Axioms A, and M, respectively imply that .
x+y+z=x+(y+z) and xyz=x(yz2). 27

Having defined x + y + z and xyz, we define x + y+ z + u and xpzu as
xtytztu=(x+y+2z)+uy,

xXyzu = (xyz)u. @8

PrOB. 2.5. Prove: If x, y, z and u are real numbers, then
@x+y+ztu=(x+y)+(z+u=x+(y+z+u)and
(b) xyzu = (xyXzu) = x(yzu).

ProB. 2.6. Prove: (a) x + z < y + z implies x < y
(b) x + z = y + z implies x = y. The result in part (b) is called the cancella-
tion law for addition. .

}

Pros. 2.7. Prove: The ¢ such that y + ¢ =", of Axiom S, is unique.

Theorem 2.1. There exists a re~! number z such that x + z = x holds for all .
x €R. This z is the only real number with this property. |

PROOF. Let b be some real number, By Axiom §, there exists a real z such
that b+ z = b, Wepr('wethatx+z=xforaIIxER. From b + z = b, we

obtain for x ER, ‘
(b+z)+x=mb+x andhence, b+(z+x)=b+x. (29)
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In the second equality, we “cancel” the b on both sides to obtain z + x
= x. This proves the existence of z. Next we prove its uniqueness.
Assume that there also exists 2 z/ € R such that x + 2’ = x for all x €R.
It follows that z + z’ = z. Similarly, in view of the property of 2z, 2"+ z
= 7’. By Axiom A; we have z 4 2’ = 7z’ + z and we conclude that z’ = z.

This completes the proof. .

Def. 2.4. The z in R such that x + z = x for all x € R is called zero and is
written as 0. Thus
x+0=x=0+x forall xeR. (2.10)

Theorem 2.2. If x ER, then x0=0.

Proor. For any y in R -
x)+x0—x(y+0)—xy-xy+0
so that xy + x0 = xy + 0. “Cancelling” xy we obtain x0 = 0 as claimed.

Given x €R, there exists (Axiom S) a real y such that x + y = 0. y is the
only real number with this property (why?).

Def. 2.5. For each x € R, the unique y such that x + y =0 is called the
negative (or additive inverse) of x and is written as — x. Accordingly, we

have
x+(—x)=0  foreach x€R. (2.11)

Pros. 2.8. Prove: —0=0.

ProB. 2.9. Prove: —(—x)= x for each x € R.

Def. 2.6. Define x — y as the ¢ such that y + ¢ = x and call it x minus y.
Pros. 2.10. i’rove: @y+(x—p)=xand (b) x —y=x+(—y).

ProB. 2.11. Prove: —(x - y)=y — x.

ProB. 2.12. Prove: z + y % z if and only if y # 0.

Def. 2.7. A real p such that p > 0 is called positive. A real n such that n <0
is called negative.

ProB. 2.13. Prove: If x >0 and y > 0, then x + y > 0.

Pro.. 2.14. Prove: If x > y, then (a) z > 0 1mphes xz>yz and (b) 2z <0
implies xz < yz. (Hint: use Axiom 05)



