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Prefoce

The purpose of this book is to provide the student with a clear and
thorough presentation of the theory and application of the principles of
engineering mechanics. Emphasis is placed on developing the student’s
ability to analyze problems—a most important skill for any engineer.
Furthermore, the Systéme International or SI system of units is used for
numerical work since this system is intended in time to become the
worldwide standard for measurement.

The contents of each chapter are organized into well-defined sections.
Selected groups of sections contain the development and explanation of
specific topics, illustrative example problems, and a set of problems
designed to test the student’s ability to apply the theory. Many of the
problems depict realistic situations encountered in engineering practice. It
is hoped that this realism will both stimulate the student’s interest in
engineering mechanics and provide a means for developing the skill to
reduce any such problem from its physical description to a model or
symbolic representation to which the principles of mechanics may be
applied. In any set, the problems are arranged in order of increasing
difficulty. Furthermore, the answers to all but every fourth problem, which
is indicated by an asterisk, are listed in the back of the book. SI units are
used in all the numerical examples and problems; however, for the
convenicnce of some instructors, every fifth problem is stated rwice, once
in SI units and again in FPS units.

Besides a change from FPS to SI units and the addition of many new
problems, this book differs from the author’s first edition: Engineering
Mechanics: Dynamics in many respects. Most of the text material has been
completely rewritten so that topics within each section are categorized into
subgroups, defined by bold face titles. The purpose of this is to present a
structured method for introducing each new definition or concept and to
provide a convenient means for later reference or review of the material.



vi

Preface

Another unique feature used throughout this book is the “Procedure for
Analysis.” This guide to problem solving, which was initially presented in
Sec. 9-3 of the first edition of Engineering Mechanics: Statics, is essentially
a step-by-step set of instructions which provide the student with a logical
and orderly method to follow when applying the theory. As in the first
edition, the example problems are solved using this outlined method for
solution in order to clarify application of the steps.

Since mathematics provides a systematic means of applying the princi-
ples of mechanics, the student is expected to have prior knowledge of
algebra, geometry, trigonometry, and some calculus. Vector analysis is
introduced at points where it is most applicable. Its use often provides a
convenient means for presenting concise derivations of the theory, and it
makes possible a simple and systematic solution of many complicated
three-dimensional probiems. Occasionally, the example problems are
solved using several different methods of analysis so that the student
develops the ability to use mathematics as a tool, whereby the solution of
any problem may be carried out in the most direct and effective manner.

The contents of this book are presented in 11 chapters.* In particular,
the kinematics of a particle is discussed in Chapter 12,1 followed by a
discussion of particle kinetics in Chapter 13 (equations of motion), Chap-
ter 14 (work and energy), and Chapter 15 (impulse and momentum). A
similar sequence of presentation is given for the planar motion of a rigid
body: Chapter 16 (planar kinematics), Chapter 17 (equations of motion),
Chapter 18 (work and energy), and Chapter 19 (impulse and momentum).
If desired, it is possible to cover Chapters 12 through 19 in the following
order with no loss in continuity: Chapters 12 and 16 (kinematics), Chap-
ters 13 and 17 (equations of motion), Chapters 14 and 18 (work and
energy), and Chapters 15 and 19 (impulse and momentum).

Time permitting, some of the material involving spatial rigid-body
motion may be included in the course. The kinematics and kinetics of this
motion are discussed in Chapters 20 and 21, respectively. Chapter 22
(vibrations) may be included if the student has the necessary mathemat-
ical background. Sections of the book which are considered to be beyond
the scope of the basic dynamics course are indicated by a star and may be
omitted. Note, however, that this more advanced material provides a
suitable reference for basic principles when it is covered in more advanced
courses.

The author has endeavored to write this book so that it will appeal to
both the student and the instructor. Many people helped in its develop-
ment. I wish to acknowledge the valuable suggestions and comrnents

* A discussion of units and a review of vector analysis is given in Appendixes A and B,

respectively.
1The first 11 chapters of this sequence form the contents of Engineering Mechanics:

Statics.



made by M. H. Clayton, North Carolina State University; D. I. Cook,
University of Nebraska; D. Krajcinovic, University of Illinois at Chicago
Circle; W. Lee, United States Naval Academy; G. Mavrigian, Youngstown
State University; F. Panlilio, Union College; H. A. Scarton, Rensselaer
Polytechnic Institute; W. C. Van Buskirk, Tulane University; and P. K.
Mallick, [llinois Institute of Technology. Many thanks are also extended to
all of the author’s students and to the professionals who have provided
suggestions and comments. Although the list is too long to mention, I hope
that others who have given help will accept this anonymous recognition.
Lastly, I should like to acknowledge the able assistance of my wife,
Cornelie, who has furnished a great deal of her time and energy in helping
to prepare the manuscript for publication.

Russell C. Hibbeler
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Kinematics of a Particle

12-1. Introductory Remarks, Kinematics of Particles

Engineering mechanics consists of a study of both statics and dynamics.
Statics deals with the equilibrium of bodies at rest or moving with
constant velocity, whereas dynamics deals with bodies having accelerated
motion. In general, dynamics is more complicated than statics, since the
forces acting on the body must be related to the body’s acceleration. The
subject of dynamics is usually divided into two parts: (1) kinematics is
concerned with the geometrical aspects of motion, and (2) kinetics is
concerned with the analysis of the forces causing the motion. For sim-
plicity in presenting the theory of both kinematics and kinetics, particle
dynamics will be discussed first, followed by topics in rigid-body dynam-
ics.

Particle Motion. Recall that a particle is defined as a small portion of
matter such that its dimension or size is of no consequence in the analysis
of a physical problem. In most problems encountered, one is interested in
bodies of a finite size, such as rockets, projectiles, or vehicles. Such objects
may be considered as particles, provided motion of the body is character-
ized by motion of its mass center and any rotation of the body can be
neglected.

In general, the “kinematics” of a particle is characterized by specifying
the particle’s displacement, velocity, and acceleration. This chapter begins
with the study of the absolute motion of a particle, which is motion
measured with respect to a fixed coordinate system. In this regard, motion
along a straight line will be studied before introducing the more general
motion along a curved path. Afterwards, the relative motion between two
particles will be considered, using a translating coordinate system.



2 Ch. 12. Kinematics of a Particle

12-2. Rectilinear Velocity and Acceleration
of a Particle

The simplest motion of a particle is motion occurring along a straight-line
path, called rectilinear motion.

Position. Consider the particle at point P shown in Fig. 12-1. The
coordinate s which is measured from the fixed origin O, is used to define
the position of the particle at any given instant. If s is positive, the particle
is located to the right of the origin; if s is negative, the particle is located to
the left. Ordinarily, this position is measured in metres (m).

P
@

R

Fig. 12-1

Displacement. The displacement of the particle is defined as the change in
its position. This is represented by the symbol As. When the particle’s final
position P’ is to the right of its initial position P, As is positive, Fig. 12-1;
when the displacement is to the left, As is negative.

The displacement of a particle must be distinguished from the distance
the particle travels. Specifically, the distance traveled is defined as the rotal
length of path traversed by the particle—which is always positive.

Velocity. Consider now that the particle moves through a positive dis-
placement As from P to P’ during the time interval As, Fig. 12-1. The
average velocity of the particle during this time interval is defined as

A
Upe = A—j (12-1)

By taking smaller and smaller values of Az, and consequently smaller and
smaller values of As, we obtain the instantaneous velocity, defined as

or

(12-2)

For both the average velocity and instantaneous velocity, the direction
is either positive or negative depending upon whether the displacement



is positive or negative. For example, if the particle is moving to the right as
shown in Fig. 12-1, the velocity is positive. The magnitude of the velocity
is known as the speed. If the displacement is expressed in metres (m) and
the time in seconds (s), the speed is expressed as m/s.

Occasionally the term “average speed” is used. The average speed,
(Ugp)avg: 1s defined as the total distance of the path traveled by a particle,
sy, divided by the elapsed time Ay i.e.,

S
(Vep)avg = A_Tt (12-3)
v v+ Av
—_—
P i:'
At L S s
Fig. 12-2

Acceleration. Provided the instantaneous velocities for the particle are
known at the two points P and P’, the average acceleration for the particle
during the time interval As is defined as

Av
avg = E (12—4)
where Av represents the difference in the velocities during the time
interval Az, Fig. 12-2.
The instantaneous acceleration at time 1 is found by taking smaller and
smaller values of A, and corresponding smaller and smaller values of Av,
so that

a = lim (M)

At-0

At
or

(12-5)

Taking the second time derivative of Eq. 12-2, we can also write

d>s
ar— s (12-6)
Both the average and instantaneous acceleration can be either positive
or negative. In particular, when the particle is slowing down, the velocity
change is negative and the particle is said to be decelerating. Also, note
that when the velocity is constant, the acceleration is zero. Units commonly
used to express the magnitude of acceleration are m/s2.
A differential relation involving the displacement, velocity, and accel-
eration along the path may be obtained by solving for the time differential
dt in Egs. 12-2 and 12-5 and equating, i.e.,

12-2. Rectilinear Velocity
and Acceleration
of a Particle

3



4 Ch. 12. Kinematics of a Particle

so that

(12-7)

Constant Acceleration. When the acceleration is constant, a = a,, each of
the three kinematic equations @ = dv/dt, v = ds/dt, and a ds = v dv may
be integrated to obtain formulas that relate a,, v, s, and 1.

To determine the velocity as a function of time, integrate
a = dv/dt = a,, assuming that initially v = v, at 7 = 0.

t

fvdvzf a,dt

0
v—uv, =a,(t—0)

(12-8)

To determine the displacement as a function of time, integrate
v = ds/dt = v, + a., assuming that initially s = s, at r = 0.

t
f (vy + a,t)dt

$1 0
s —5; =0t = 0) + a,t? —0)

—
&
Il

:XS = sl' +vl t +éa¢t2 (12-9)
To determine the velocity as a function of displacement, either solve for ¢
in Eq. 12-8 and substitute into Eq. 12-9, or integrate v dv = a, ds, as-
suming that initially v = v; when s = s,.

v s

,f udv:f a, ds

(12-10)

The magnitudes and signs of s, v, and a,, used in these equations, are
determined from the chosen origin and positive direction of the s axis.
It is important to remember that the above equations are useful only
when the acceleration is constant. A common example of constant acceler-
ated motion occurs when a body falls freely toward the earth. If air
resistance is neglected and the distance of fall is short, then the constant
downward acceleration of the body is approximately 9.81 m/s%.*

*The proof is given in Example 13-3.



PROCEDURE FOR ANALYSIS

When a functional relationship between any two of the quantities q, v,
s, and 7 is known, the functional relations describing the other kinematic
quantities can be obtained by either the proper differentiation or integra-
tion* of the equations ¢ = dv/dt, v = ds/dt or ads = v dv. In attempting
to solve a problem, it should be realized that each of these equations
relates three quantities. Hence when a quantity is known as a function of
another quantity, the third quantity is obtained by choosing the kinematic
equation which relates all three. For example, suppose that the acceleration
is known as a function of displacement, a = f{s). The velocity can be
determined from « ds = v dv by substituting f(s) for a, since fls) ds = v dv
may be integrated.t The velocity cannot be obtained by using a = dv/d1,
since a is not a function of time, i.e., f{s) dt = dv cannot be integrated.
Proceeding on this basis, four common types of problems which are often
encountered, and their method for solution, are given as follows:

1. Acceleration given as a function of time, a = f(t). To find the velocity as
a function of time, substitute into a = dv/dt, which yields dv = f{(1) dy,
and integrate to obtain v = k(7). The displacement as a function of
time is obtained by substituting for v into v = ds/dt, which gives
ds = h(1) di. Integration yields s = g(¢).

2. Acceleration given as a function of velocity, a = f(v). To find the velocity
as a function of time, substitute into a = dv/dt, which yields
dv = f(vydt or dv/f(v) = di, and integrate to obtain v = h(t). The
displacement as a function of time is obtained by substituting for v into
v = ds/di, which gives ds = h(r) di. Integration yields s = g(7).

3. Acceleration given as a function of displacement, a = f(s). To find the
velocity as a function of displacement, substitute into a ds = v dv,
which yields f(s)ds = vdv, and integrate to obtain v = h(s). The
displacement as a function of time is obtained by substituting for v into
v = ds/di, which gives h(s) = ds/dt or ds/h(s) = dt. Integration yields
s = g(1).

4. Acceleration is constant, a = a,. Rather than integrating, use one of the
appropriate derived equations, 12-8, 12-9, or 12-10.

*Some standard differentiation and integration formulas are given in Appendix C.

+The position s, and velocity v; must be known at a given instant in order to evaluate
either the constant of integration if an indefinite integral is used, or the limits of integration
if a definite integral is used.

12-2. Rectilinear Velocity 5
and Acceleration
of a Particle



6 Ch. 12. Kinematics of a Particle

Example 12-1

A small projectile is fired vertically downward into a fluid medium with
an initial velocity of 60 m/s. If fluid resistance causes a deceleration of the
projectile which is equal to a = (—0.4v3) m/s?, where v is measured in
m/s, determine both the velocity v and position s four seconds after the
projectile is fired.

Solution

Since a is given as a function of velocity, a = (—0.4v3) m/s?, to obtain
velocity v as a function of time it is necessary to use @ = dv/dt, since this
equation relates v, a, and 1. (Why not use Eq. 12-8, v = v, + a,t?) If the
downward direction is assumed positive, then integrating, with the initial
condition that v = 60 m/s at ¢ = 0, yields*

_4dv _ a3
(+)) a=--= 0.4v
v dU . t
f60 Z0.40° _L ar
1 1 |® _
08 v2 |g

6%[%_ (6(1))2] =1

v = [[(-6—(1-)7 + O.8t] _1/2} m/s

Here the positive root is taken, since the projectile is moving downward.
When ¢t = 45,

v =0.559m/s Ans.

Knowing the velocity as a function of time, the position s as a function
of time is obtained from v = ds/dt, since this equation relates s, v, and ¢.
Using the initial condition s = 0 at f = 0, we have

(+4) v = %}S = [(6(1))2 + 0'8t]_1/2
s t 1 -1/2
j(; ds =j(; [(60)2 + t] dt

*The same resuli is obtained by evaluating a constant of integration rather than using
definite limits on the integral. For example, integrating dr = dv/—0.4v% yields
t = 1/0.8(1/v?) + C. Using the condition that at r =0, v = 60 m/s, the constant of
integration is C = — 1/0.8[1/(60)2].
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When r =45,

s =443 m Ans.

Example 12-2

A boy tosses a ball in the vertical direction off the side of a cliff, as
shown in Fig, 12-3. If the initial velocity of the ball is 15 m/s upward, and
the ball is released 40 m from the bottom of the cliff, determine (a) the
maximum height s reached by the ball and (b) the speed of the ball just
before it hits the ground. During the entire time the ball is in motion, it
is subjected to a constant downward acceleration of 9.81 m/s? due to
gravity. Neglect the effect of air resistance.

Solution

Part (a). The coordinate axis for position s = 0 is taken at the base of the
cliff as shown in the figure. At the maximum height s, the velocity vy = 0.
Furthermore, the ball is thrown from an initial height of s, = +40 m.
Since the ball is thrown upward at ¢ = 0, it is subjected to a velocity of
v, = +15m/s (positive since it is in the same direction as positive
displacement). For the entire motion, the acceleration is constant such that
a, = —9.81 m/s? (negative since it acts in a direction opposite to positive
velocity or positive displacement). Since a, is constant, throughout the
entire motion, the displacement may be related to velocity at points 4 and
B using Eq. 12-10, i,

(+n

vg = v3 + 2a,(sg — 5,)

0 = (15)2 + 2(—9.81)(s; — 40)

so that

sp=51.5m Ans.

Part (b). To obtain the velocity v, of the ball just before it hits the
ground, Eq. 12-10 can be applied between points B and C, Fig. 12-3,

(+1M ve = v + 2a,(s; — sp)
0+ 2(—=9.81)0 — 51.5)

ve = —31.8 m/s

Ans.

The negative root was chosen since the ball is moving downward.
Similarly, Eq. 12-10 may also be applied between points 4 and C, i.e.,

(+1 vE = v5 + 2a(sc — s,)
152 4 2(—9.81)(0 — 40)

Vo = —31.8m/s

Ans.

12-2.

vq = 15m/fs

Rectilinear Velocity 7

and Acceleration
of a Particle
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