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INTRODUCTION

This volume of the Mathematical Association of America series
Studies in Mathematics is a collection of eight papers from the field
of mathematical optimization. This collection constitutes an in-
teresting sample of topics and techniques of current interest in
optimization, however, we caution, it is too small to be considered
representative of this important and developing subject.

As practiced, mathematical optimization can be approximately
deseribed as the tasks of

(1) Developing a mathematical structure, called a program,
which models some ‘““real world situation’’; in general, rela-
tions of the structure represent restrictions on the value of
the variables and the objective function(s) provides a
measure(s) of performance.

(2) Investigating existence and attributes of optimal (or near
optimal) solutions; finding ways to characterize optimal
policies.

(3) Designing and utilizing algorithms for computation of
optimal (or near optimal) solutions.

(4) Implementing the mathematical solution in a particular
application, evaluating the results, and making modifica-
tions.
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Each paper of this volume treats some aspects of tasks (1), (2)
and (3). After making brief comments about each paper, we will
say a few words about the relationship of optimization theory to
an education in mathematics.

The first paper by A. W. Tucker, “Combmatorlal Algebra of
Linear Programs” opens and closes with discussions regarding
the growing impact of combinatorics in applied areas of mathe-
matics. As linear programming is perhaps the main prerequisite for
appreciating the other articles in this volume, a reader might well
begin his perusing with this article.

One device for studying a mathematical program is through
duality theory. Given an optimization problem, called the primal
program, there is often another optimization problem, called the
dual, which is related in a very strong and intricate way to the
original problem; that is, to the primal program. For example, the
optimal objective value of the primal and dual programs might be
equal or a solution to the dual might yield a solution to the primal.
Most of the papers in this volume, e.g., that of Tucker, make ex-
tensive use of duality concepts.

The second paper by Richard W. Cottle and George B. Dantzig,
“Complementary Pivot Theory of Mathematical Programming”,
defines the linear complementarity problem as that of seeking n-
vectors w and z satisfying:

w=q+ M: w20 220
Twez=20

where M, a square matrix, and ¢, a vector, are given. This model is
shown to include linear and quadratic programming and general
sum two-person games in normal form. Lemke’s finite comple-
mentary pivoting algorithm for finding a complementary solution
for certain M and q is next described and established. As the sim-
plex method for linear programming the scheme iterates by moving
from one extreme point to the next along edges of a polyhedral set.
However, Lemke’s algorithm is most unusual in that convergence
is not based on monotone improvement of some function. It is this
feature that permits one to find globally optimal solutions to cer-
tain classes of non-linear non-convex extremum problems.
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Harold W. Kuhn, in his article, “ ‘Steiner’s’ Problem Revisited”,
treats the problem of finding a point, popularly called a Steiner
Point, in Euclidean space such that the weighted sum of. distances
from this point to n given points is minimum. The Steiner Point
is shown to have certain attributes. The non-linear dual problem is
developed and shown to have an interesting form. An algorithm
for solving the problem is described and its convergence to the
unique solution is proved.

The article by B. Curtis Eaves, “Properly Labeled Simplexes”,
treats a generalization of Sperner’s Lemma; triangulations are
needed in the proof but not in the statement of this result. The
unique convergence proof of Lemke for complementary pivoting,
as discussed in the article of this volume by Cottle and Dantzig,
is employed on an infinite structure. An algorithm for computing
fixed points is a natural by-product of the method of proof.

Jack Edmonds and D. R. Fulkerson, in their article, “Bottle-
neck Extrema”, develop & “min max” problem

min max f(x)
RER z€R

wherein they minimize over certain subsets R of a finite set E and
maximize over elements z of the subsets R. For example, one
might consider the task of finding a route through a network be-
tween two given points such that the bottleneck (that is, the least
arc number encountered on the route) is least restrictive. A dual
“max min” problem

max min f(z)
8€8 z€8

is treated wherein they maximize over certain subsets of the same
finite set £ and minimize over elements of the subset. The main
results are a theorem that the primal and dual problems have equal
objective value and an algorithm for computing solutions to these
two problems. Note that the duality theorem here, for example, is
based on a discrete or combinatorial structure whereas others,
as in Kuhn’s paper, are based on continuous or nondiscrete
structures.



4 Introduction

Herbert Scarf and Lloyd S. Shapley, in their article, “On Cores
and Indivisibility”, develop a model for a market in which n
participants trade indivisible goods; each participant (a trader)
enters the market with one unit of a good, say a house, and his
preference ordering of all goods of the market. It is proved that the
“core” is nonempty, that is, it is proved that there is a scheme of
trading among the n participants such that no subcollection of the
participants, in view of their preferences, might wish to withdraw
to trade only among themselves. The development is based upon a
theorem of Scarf; a proof of this theorem is given in Example 4 of
“Properly Labeled Simplexes” in this volume.

The article by Arthur F. Veinott, Jr., ‘“Markov Decision
Chains”, treats the problem of optimally controlling a finite state
Markov chain process. If the process is initiated in a given state,
then one of a finite number of alternatives must be selected which
results in an ‘‘immediate income” (or expense) but also determines
the probability distribution of the transition to the next state. An
infinite sequence of immediate incomes is thus generated. The
paper concerns itself with evaluating these income sequences,
under various criteria, investigating the properties of optimal solu-
tions, and computing optimal solutions. Applications include a
gambling problem, a sequential decision problem, and an inventory
problem.

The last paper, “The Decomposition Algorithm for Linear Pro-
grams”, by George B. Dantzig and Philip Wolfe, provides a de-
vice whereby one large linear program is partitioned into two sets,
one representing a set of ‘“joint” constraints and the second set
consisting of a collection of smaller subproblems that are inde-
pendent of each other except that their variables are related
through the joint constraints. Following partition one has associ-
ated with the joint constraints a ‘“‘master’’ program which coordi-
nates the solutions of a collection' of subproblem programs. The
coordination between the master and subproblems proceeds roughly
as follows: the master delivers to a subproblein tentative “prices”
(Lagrange Multipliers) associated with the joint constraints; as-
suming these prices, the subproblem optimizes and returns to the
master problem certain-facts about this optimal solution. Using
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this new information the master linear program is resolved. The
process repeats and terminates with an optimal solution to the
original large linear program. This decomposition principle “yields
a certain rationale for the decentralized decision process in the
theory of the firm.” :

The remainder of this introduction is devoted to a recommenda-
tion regarding the future of optimization theory in mathematics
education.

Optimization as we have descnbed it became viable with the
advent of computers. The computer revolution has so broadened
the base of quantitative analysis that almost all areas of human

-endeavor are now being modelled in mathematical terms. It is said
that approximately one-fourth of all current scientific computation
involves optlmlzatlon It is this force that has spurred the rapid
progress in this field.

Optimization theory is now a fertile ground for new and pressing
problems, for classes of problems upon which to build new mathe-
matical theories; it could be a source of new, exciting, and relevant
problems which would serve to stimulate and to motivate the
mathematics student. The creative student could be challenged by
the collection of outstanding unsolved problems. Two such prob-
lems are the traveling salesman problem and the Hirsh (or m-step)
conjecture; both of these problems are concerned with finding a
“good algorithm’” in the sense of J. Edmonds: a good algorithm is
one in which the time to compute a solution to a numerical prob-
lem grows algebraically (e.g., not exponentially) with the size of
the problem.

The shortest route problem is related to the traveling salesman
problem but is much easier: given a road map, consider the task of
finding the shortest distance from San Francisco to Boston. One
formulates this problem in mathematical terms by representing the
cities as points in a set and roads between cities by arcs, a binary
relation. A distance is a.ssigned to the ares and the concept of a
simple path in a graph is introduced. Since the number of simple
paths between any two points is obvxously finite, the shortest route
problem is uninteresting from an existence point of view. Namely,
just pxck the shortest path among the finite set of possible paths.
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Unfortunately for the case of a complete graph with n nodes there
are many such paths. Using direct enumeration for n = 90, if
there were 10% computers on each of the 10" stars of the Milky
Way, if each computer analyzed 10* paths per second, and if all
these computers were running in parallel since the beginning of
time 10 years ago (the big bang), only a tiny fraction of the paths
would, to date, have been examined. Given m nodes and n arcs,
can one devise a shortest route algorithm that requires at most,
say n + m additions and comparisons; what is the best one can do?
It is known that n?/2 additions and n? comparisons can be attained
for the complete graph with non-negative distances. Thus for the
shortest route problem good algerithms have been devised pro-
vided the arc distances are non-negative. If the arc-distances can
have negative as well as positive values does there exist a “‘good”
shortest pzth algorithm? The enlarged class of problems now in-
cludes ihe famous traveling salesman problem: a traveling salesman
has a sweetheart in the capital city of each of the 50 states. He feels
it is his duty to arrange his tour so as to visit each of his sweet-
hearts. Find the shortest tour. This problem has been lying about
in mathematical circles since the 1930’s and perhaps earlier. From
an algorithmic point of view this is a fascinating problem.

It is now known that the simplex method of linear programming
is not a “good algorithm” in the sense of Edmonds. Nevertheless,
for tens of thousands of applied problems the simplex method has
converged in the neighborhood of 3m steps where m is the numbeér
of equations in the linear program. However, examples have been
constructed where the number of iterations grows exponentially
with n, the number of variables. A full explanation of the difference
between practiced and contrived examples appears to be beyond
the capabilities of current mathematics. An interesting problem
related to this general question is the Hirsh (or m-step) conjecture.
Namely, given two extreme points p and ¢ of an n-dimensional
polyhedral convex set P with f full dimensional faces; does there
exist a path of extreme edges from p to ¢ with no more than m =
J — n edges? This existence question is easy enough to under-
stand, as is the problem of the traveling salesman, and as-elusive.
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It seems to us that omission of .optimization in the typical
mathematics curriculum deprives the student of an exciting and
relevant outlet for their talents. Recently a combinatorial eourse
at a major university was informally surveyed to find out how
many had even heard of such subjects as linear programming,
mathematical programming, network theory, or integer: program-
ming. Only about half the class had. Those who had not were
mathematics majors. v

In order to expose the student to mathematical optimization we
have two suggestions. First, new courses could supplement (or
replace) those in the traditional undergraduate curriculum in

" mathematics; for example, an introductory course on finite mathe-
matics (already popular in many schools) or an advanced under-
graduate course on combinatorial analysis which includes some
optimization theory. Classical combinatorics is sometimes useful—
it occasionally prevents people from programming an exhaustive
search procedure on the computér. For example, one would prob-
ably decide not to list out all the paths in a network, if he knew in
advance that there were an astronomical number of possibilities..
However, the portion of combinatorial analysis which seems to .
have the most important applications is that concerned with select-
ing the best of all the combinations. This, for example, is what
linear programming is all about. An economy has many alternative
technologies it can draw upon; some use more labor than others
and make more intense use of scarce resources, or more intensive
use of limited capacity. The problem then becomes how to select,
how much, and when. -

Second, aspects of university organization might be revised so
that all students of mathematics are more likely to be exposed, as a
matter of curricular routine, to the “mathematical sciences”. At
present, there is no general descriptive term to cover the fields of
operations research, management science, control theory, statistics,
numerical analysis as applied to computer science, and traditional
applied mathematics. What is emerging instead is one sweeping
descriptive term ‘“Mathematical Sciences” which also includes
‘““pure” mathematics. Universities might consider developing a
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School of Mathematical Sciences encompassing mathematics,
operations research, statistics, computer science, and classical ap-
plied mathematics. ,

As an historical note, a number of fields would be broadly referred
to as belonging to “Applied Mathematics” except for a semantic
difficulty: the term “Applied Mathematics” has been used, tra-
ditionally, for mathematical systems drawn from the physical
sciences. New terminology has emerged to circumvent this semantic
impasse, for example “Mathematical Seiences” and ‘“Operations
Research.”

GEORGE B. DanTtzI1G
B. CurTtis EAvVEs



COMBINATORIAL ALGEBRA OF LINEAR
PROGRAMS*

A. W. Tucker

Many advances on the frontiers of mathematics are related in-
creasingly to the “applied” interests of social scientists, economists,
statisticians, operations researchers, industrial and design en-
gineers, and others. Such subjects as linear pragramming, game
theory, network theory, Boolean algebra, Markov processes, and
information theory are used frequently in industrial and govern-
ment applications, and appear increasingly often both as topics
for research and as tools in investigations in other areas. These and
other related subjects fall mainly within the rapidly developing
field of Combinatorial Mathematics. The author’s view of the
importance of this field was given in the Foreword to the Novem-

. * This is a slight revision of a paper, prepared with the assistance of M. L.
Balinski, H. D. Mills, and R. R. Singleton, and published in NEW DIREC-
TIONS IN MATHEMATICS (Dartmouth College Mathematics Conference,
1961), edited by J. G. Kemeny, R. Robinson and R. W. Ritchie, Prentice-Hall-
1963, pp. 77-91.

9
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ber, 1960, issue of the IBM Journal, which was especially devoted
to the field.

“Combinatorial Mathematics, or ‘Combinatorics’, regarded as
originating in the Ars Combinatoria of Leibniz, has to do with
problems of arrangement, operation, and selection within a finite
or discrete system—such as the aggregate of all possible states of a
digital computer. Until recently, preoccupation with continuous
mathematics has inhibited the growth of discrete mathematics.
But now it is realized that combinatorial methods can be developed
to attack profitably, in modern science and technology, a vast
variety of ‘problems of organized complexity’—an apt designation -
of Warren Weaver [1]. In 1947 Hermann Weyl [2] wrote as fol-
lows (rearranged slightly for quotation here):

‘ ‘Perhaps the philosophically most relevant feature of modern
science is the emergence of abstract symbolic structures as the hard
core of objectivity behind—as Eddington puts it—the colorful
tale of the subjective storyteller mind. The combinatorics of ag-
gregates and complexes deals with some of the simplest such strue-
tures imaginable. It is gratifying that combinatorial mathematics
is 80 closely related to the philosophically important problems of
individuation and probability, and that it accounts for some of the
most fundamental phenomena in inorganic and organic nature.
This structural viewpoint occurs in the foundations of quantum
mechanics. In a widely different field John von Neumann’s and
Oskar Morgenstern’s attempt to found economies on a theory of
games is characteristic of the same trend. The network of nerves
joining the brain with the sense organs is a subject that by its very
nature ‘invites combinatorial investigation. Modern computing
machines translate our insight into the combinatorial structure of
mathematics into practice by mechanical and electronic devices.’

Let us now examine one specific new direction in applied mathe-
matics which exhibits combinatorial structure characteristic of the
field outlined above. This is linear programming, a subject born in
1947 and now extended in various ways under the title “mathe-
matical programming”’—to avoid confusion with computer pro-
gramming. This subject has an extensive literature from which
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four items are selected rather arbitrarily for mention:—a complete
treatise [3], with introductory chapters on problems, origins, and
models, by the originator of the subject, and three elementary text-
books, {4], [5], and [6], with linear-programming chapters using the
same tableau-pivot format we do here.

A MINIATURE EXAMPLE OF LINEAR PROGRAMMING

A linear program is a problem of “optimizing” (i.e., maximizing
or minimizing) a linear ‘“objective’” function of many (real)
variables subject to a system of linear ‘“‘¢onstraints,” each of which
is a linear inequality or linear equation. The following is an ex-
ample, in miniature, ’

Minimize the objective function
(0) =X+ 3u
subject to the constraints
1) =x+2u22
2 A= p=-3
3) 2l
4 AN—2u2 -5
, (B) =A+ p22
This miniaturé lineat program can readily be analyzed graphic-
ally. In a A, u-coordinate plane (see Figure 1) we plot the “half-
planes” (1)-(5). In each casg the halfplane (which includes its
boundary line) is labelled by its number along its boundary line
on the side of the line in whith the halfpla.ne lies: for example, the
label (1) appears along the line —\ + 2x = 2 within the halfplane
—\ + 2u 2 2. The set of feasible points (A, u) satisfying all five
.constraints is a quadrllatera.l determined by‘ (2), (3), (4, (5).

The first-constraint is inactive, as it happens, because the feasible
set lies entirely within'the “open halfplane” —\ + 2u > 2. The
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/ §u)§)I
/1 30~ ¢ > {
?’ /// /x
/

12

Fia. 1. Graphical analysis of the miniature linear program.

objective function, which is to be minimized, is represented by some
particular contour (or level) lines along which it takes values as
indicated. We see that the desired minimum appears to occur at
the point of intersection of lines (3) and (5), namely at the point
35, with coordinates A = —1, u = 1, where the objective function
takes the value 4. ’

SYSTEMATIC DISCUSSION OF EXAMPLE

The foregoing graphical method of solving a linear program does
not generalize beyond two or three variables, whereas linear pro-
grams involving scores or hundreds of variables are not uncommon
in actual practice. So, starting afresh, we outline a tabular sys-
tematization of our example which does generalize to large-scale
problems.



COMBINATORIAL ALGEBRA OF LINEAR PROGRAMS 13

To this end, we introduce the ‘“tableau”

)1 ¥ /2 Y s —1

Al -1 1 0 1 -1 |{-~-1]|=0

I 2 -1 1 -2 1 31 =0

=% =Xy =3 =Ty =Ts =U

consisting of a matriz of three rows and six columns inside the box
and certain marks A, g, —1, etc., around the four margins of the
box. The six signs of equality along the bottom of the box indicate
a “column system” of six linear equations

'—R+2M"'2=21

A= ut+3==2
| Tn—1=:v;
A—2u+5=a4
A+ u—2=23
=N+ 3u =u

obtained by forming inner (or scalar) products of A, x, —1 with
the columns of the matrix and setting these inner products equal
to 1, 21, 23, 2, 75 and u. Then the constraints (1)-(5) of our
example, as previously stated, become z; = 0, 22 2 0, 2;.2 0,
Z¢ 2 0, 25 = 0, and the objective function becomes u. We seek
values of X and u that minimize 4 and make the five z’s nonnega-
tive.

The tableau contains also-a ‘“row system” of three linear
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equgtions

-n+t+ n»n + %~ yp+1=0

2n—- ppt+ym—20u+ y$s—3 =0

2y — 3y + ys — 5y + 2y =19,
indicated by the three signs of equaljty at the nght-hand margin,
of the box. We obtain these equations by forming inner products
of the rows of the matrix with y1, ¥s, ¥s, ¥4, ¥5, —1 and setting these
inner products equal to 0, 0, and ». This row system is essential to
our analysis; it will give rise to a second linear program, “dual”
to-our first.

We observe, by substituting for the z’s and « from the column

system and then reducing via the row system, that

i + Ty + Tsys + Ty + Toys — 4
= AM-n+ n + w— ¥+l
+u(2m— wnt w- 2+t wn-3)
- (2h— 3+ ¥a— S+ 295 )
= ANO0) + u(0) — (v).
Thus, the inner product of the marks at the bottom margin of the
tableau with the marks at the top margin is equal to the inner
product of the marks at the left margin with the marks at the right
margin. By rearranging terms, we have
% =0 = Zh + Tt + T + Ty + Tl
for any solutions of the column and row systems. This funda-
mental equa.txon, in which A and x do not appear explicitly, we
call the “‘key equation” (of duality).
‘A solution (A, u; y, Ty, Tyy Toy Ty, u) of the column system, or
columnaolutlon,” 18 feasible if its five 2’s are nonnegative. Simi-
larly, a solution (y1, 92 ¥s, Ys, Ys, v} of the row system, or “row-

solution,” Is feasible if its five y’s are nonnegatlve We see froin the

key equation that
uzv



