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Editor’s Note

By now itis a truism in artificial intelligence (Al) and cognitive science that metaphor
and its parent, analogy, are ubiquitous in human cognitive behavior. A central
problem in analogy is how to match a given situation with situations stored in memory
so that the most analogous one can be brought to the fore. A deep logical problem
exists here, as suggested by Watanabe’s Theorem of the Ugly Duckling (Watanabe,
1969), to wit: “Any pair of two objects are as similar to each other as are any other pair
of two objects, insofar as the degree of similarity is measured by the number of shared
predicates.” Is the degree of analogy between two situations inherent in a given pair of
situations, a function of the context and the goal of the agent, or some combination of
the two? The first altemative, which would lead to matching routines that are functions
of only the descriptive vocabulary for situations, is ruled out if one supports
Watanabe's theorem. Belief in the second alternative means that, given any two
situations, one can find goal descriptions of the agent for which the two situations are
the most analogous. Of course, the third altemnative appears suitably moderate, bemg a
via media position, but figuring out how to combine the two altemnatives is actually
quite difficult.

Steve Owen’s work on analogy is a good step forward in attempts to understand
how analogies work. By concentrating on a well-defined set of goals {proving
theorems) and a well-defined domain (several areas of mathematics), he has built a
powerful experimental system that can be used to investigate various matching
heuristics. One of the uses of analogies in problem solving is that once an analogy is
found, the solution of the old problem is somewhat transferable to the solution of the
new problem. Owen also investigates the range of options available for controling this
solution transfer process.

Another aspect of Owen's book that workers in analogy will find useful is his analysis
of previous work in this field. His framework enables him to cast the matching and
solution-transfer strategies of earlier researchers in a more uniform language so that
they may be compared experimentally.

It seemns to me that complex problems such as analogy can be investigated only by
experiments in different domains, experiments of appropriate size and scope that do
not trivialize the problem of finding and using analogies. Owen’s work is an excellent
example of such much-needed research. | am happy to present it to the Al and
cognitive science community as part of the Perspectives in Artificial Intelligence series.

—B. Chandrasekaran
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. Refefences
Watanabe M. S., Knowing and Guessing, John Wiley & Sons, New York, 1969.



Foreword: Alan Bundy

TR . . %

Human thought’ and reisoning is replete with analogies: from the use &f
metaphor in évervday speech to the association of ideas that inspires a new
théory. It has tong been u dream of rescarchers in artificial intelligence to
build a computer program that uses analogy, so that we may better under
stanid how human analogical reasoning is possible. and 'so we can apply it te
solve technological problems. In recent vears this interest has gm\\n'dlgm?
icantly with thé work of Gentuer, (arbonell Holyoak, Winston and many
others. e R s

. Therc havé'been many attempts to build an analogical reasoning pro-
gram. but they have all been rather unsatisfactory. It is almost impossible
not to ‘cheat’ by building into the program the very analogy you wish it
to discaver.  Firstly. vou think of an analogy between two situations, for
instance, the partieles in an atom cs the planets in the solar systeni. or ra:
diation attacking a’‘cancerous growth rs armies attacking a city. ‘Secondly;
vou represent these' dituations symbolically it your program. Thirdly, yotir
program ‘discovers’ this analogy by some kind of matching process betweén
the two representations. Lastly, it demonstrates its analogical reasoning by
applying a sohmon known in one situation to an ‘unsolved’ problem in the
other. '

One‘is never sure what understanding has been gained in such demon:
strations. There i$:always the suspicion that the symbolic representations of
the two sitdations were consciously or unconsciously chosen to simplify the
task of the analbigical matclier. It is unclear how the program would fare give
some huge database of situations provided by some third party and asked
to find ai analogy suitable for solving some ‘pretiously unsolved probletit.
Would the best analogies prove elusively bevond the abilities of the matcher?
Would the matcher become bogged down in the computational complexntv
of finding all possrbﬁe conhections hetween all pairs of situations? We do not
know because we do not have access to a suitably encoded huge databasel
Nor is one likely to become available in the foreseeable future.

There is one exception to this. The world of mathematics provides a

.
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Xiv Foreword

potentially huge databasc of situations in the form of diffcrent mathemati-
cal theories, theorems and proofs. It is also especially rich in the potential
for analogies within and between these theories. Moreover, an independent
encoding of these situations is readily available from the work of mathemat-
ical logicians, and jt is a’relatively simple matter to encode large numbers
of them in a ms{h npﬁ‘;:*l}l;fe"form “This ﬂna.thcniathak wg}ﬂlqmwxdu
domain in which 4nalogical reasoning mechanism can bhe thoroughly tested
and compared. .

Despite these methodological advantages the domain of mathematics hias
heen only.a. minor player in the history of automated analogical reasoning.
The exceptions are researchers like Kling, Munyer.and Bledsoe. Their.goal
has,been: the use. of analogies between formulae to guide the search for the
unknown, proof,ef,a new conjecture using the known proof of an old thearen,
To find aad apply such.analogies they have built fuzzy matchers which look
for near jsomorphisms between the new conjecture and the old theoren.
These matchers all have rather an ad hoc flavour. They relax the normal
constraints of isomorphism in whatever ways occurred to the human designer
and were needed to find the analogies they knew were present. .,

Steve,Owen has built on all this work and has made a significant stnp.fon
ward, He has surveyed and analysed these previous matchers and discavered
the underlying principles on which they are based. This has enabled. him
to.byild a general purpose, modular matcher, which calls on a set of heuris-
tics, . These. heyristics can be rcadily modified, enabling the experimental
investigation of different combinations of heuristics. Owen has condycted
thorough experiments with this machinery to find which combinalions of
beuristics perform best in the long run. :

- Onge a match hasbeen found between the ald theorem and the new con-
jecture it can be used to map the old proofinto a new proof. Unfor tunately,
life is,pot quitg thissimple; a step of the old proof may not he a legal proof
step when mapped across, For.instance, mapping an axiom to a new fogmula
may not produce angther axiom. The mapped old proof must be considercd
as a.rough plan, which requires filling out; to. hecome a _proof of the now
conjecture. OQwen has also applied his walv!xcal and experimental metlod-
ology ta this;problem. He has surveyed previous work on plan appljcation
angd nwcct:gate(l the chonces available for implementing plan applicrs. Using
this analysis he has built a modular system which allows different options, to
be rapidly chgsen and compared. He Las then conducted his wsnal thorough
testing of the different options in order to assess their relative merits.

At last we have a hasis for the empirical study of analogical reasoning.
Owen has shoygn us how to test the propertics of analogy finding matchers
and plan ‘appliers on a l)odv of mdnpm]dent data. His modular matcher
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and plan applier enable us to formulate and test different hypotheses about
the mechanisms of analogical reasoning. I believe this book will represent a
major milestone in the computational investigation of analogical reasoning
and become required reading for the new generation of researchers that it

will inspire.

Alan Bundy
University of Edinburgh




Chapter 1

Introduction

1.1 The goal

The goal of the research described in this book is to) enhance automatic
problem solving systems with analogical ability: that is. a capacity to use
a l\nown solution to a problem to aid in the solution of a similar problem.

The goal is primarily a technical one. However. much of the inspiration
for'ihe endeavour comes from the accepted human ability to reason by anal-
ogy — this apparently natural ability, when set alongside the inability of
even a powerful theorem prover to make use of its experience, motivates the
studv of analogical reasoning in artificial intelligence (Al).

] I‘ he previous paragraph gives an informal definition of analogical problem

sol\'lpg the solution of a problem using knowledge of the solution to a similar
pl:ol'ﬂem asa guide. As we shall see, we will need to refine this definition. for
oxample to e)gdudc ‘reasoning by inductive generalisations, which certainly
fits the def nmon g\en Howeve -, the definition given forms the focus of
this book.

Motivation for the research comes from a desire to build more power-
ful and adaptable problem sol\mg systems. An automatic problem solver
thh analogical ability would be an extensible reasoning system: that
is, a system ahle to increase its problem solving power over the course of
¢xperience in solving specific problems. As more problems were solved, the
system would extend its knowledge base and power through being able to
use analogies with a larger set of past problems. We would thus hope to see
increased problem solving power as one direct result of the analogical abil-
ity. However, it may be that analogical ability proves most useful in other
ways: knowledge of useful analogies in a domain can indicate directions for
generahsauon. Such geuerahsauons can represent major breakthroughs m
the understaﬁfﬁng ofa domam In'this way anafogacai abﬂity ixn be of more

Lite 50y SR
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2 Chapter 1 Introduction

significance than simply in improving a system’s ability to answer questions:
it can help to ask new questions.

Such a system remains a long term aim. Many problems will have to be
overcome before one is built; some of these problems are addressed in this
book, some are not. Section 1.6 discusses the scope and limitations of the
book. N
The work described in this book is not intended primarily to represent
a model of human analogical reasoning, despite being motivated by the cor-
responding human ability. The goal is to build computer systems which can
use analogy. However, the work is influenced by the models of analogical
reasoning which have been proposed by cognitive psychologists (we discuss
these in the next chapter); and it may well be that the research will prove
useful to psychologists by feeding back experience of the technical aspects of
analogical reasoning.

1.2 The Basic APS framework

Figure 1.1 illustrates schematically the operation of an analogical reasoning
component. The problem solver is set problem P; to solve (the target
problem). It finds, or is directed towards, another problem P, {the base
problem) whose solution §; it knows. A match is found between the
two problem statements; the match represents the similarities, and perhaps
differences, between the problemns. Given such an analogy match. the system
constructs out of §; a plan, X, for the solution of the target problem; as
noted above, an analogy is used to guide the problem solver: the guidance
is encapsulated in the analogical plan. The system then attempts to apply
the plan, which means following the guidance encoded in the plan, as far
as possible, in the hope of constructing a solution to the target problem.
In the language of secarch, the problem solver uses the analogical plan to
choose which steps to take in attempting to solve Py. If the analogy is a
good one, the steps suggested will, on the whole, be the right ones, and the
search required to solve P; will have been greatly reduced. We will call this
approach to analogical problem solving (APS) Basic APS.

As indicated above, the Basic APS framework is not intended as a model
of human analogical reasoning (although it bears resemblances to many such
models); but it describes how APS researcliers have attempted to introduce
analogy into automatic problem solvers.

The Basic APS framework leaves open the issue of where the base prob-
lem comes from and lhow it is found. In almost all analogy research done so
far, the base problem is provided by the user of the analogy system. A real-
istic analogical reasoning system will have to find promising base problems
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Base Target

’Problem P) < match B

Solution

consth\ /:p ply

. Figure 1.1: Basic APS

for itself from among a large knowledge base of known and solved problems
— we refer to this problem as the base flltering problem. Many analogy
" researchers have included base filtering as part of their model of -analogi-
cal problem solving, particularly those concerned with providing a model of
human analogical reasoning. It augments the Basic APS model as a pnor
stage.

1.3 Examples
We discuss here some examples of problem solving analogies. These are the
kinds of analogy which we might wish an analogy system to handie. They
give a feel for the potential utility of an analogy in guiding the search of an
automatic problem solver, and also for the task that we face in building an
analogy system. Yy a

- By x”“

Elementary number theory
Consider the following simple results of elementary number theory:

even(z) /\ evgn(y) — even(z - y) ’ (1.1

i N
e .



4 Chapter 1 Introduction

odd(z) A odd(y) — odd(z - y) (1.2)

In a mathematics textbook, it is common for a result like the first to be
derived in the text just after the concepts of even and odd have been defined,
and then for the second to be set as an exercise for the student.

We can represent the similarities and differences between the problems
by the following symbolic correspondence:

even(z) A even(y) — even(z - y)

VLT

0dd(z) A odd(y) — odd(z y)

This correspondence indicates the structural isomorphism between the
problems, and the consistent mapping of symbols

T — I
Yy — Y

even «— odd
. —_— .

between the two. The mapping indicates differences as well as similarities
Between the problems. In embarking on a target proof by analogy to the
base proof, the hope is that the differences do not seriously affect the form
of the base proof. The use of the word ‘hope’ in the previous senfdnce is ..
significant: we are not usually sure that the analogy will work before trying
it out; often, the similarity between the problem statements is misleading,
and the attempt to use the base proof as'a guide for the proof of the target
fails. In the next chapter, we argue that this uncertainty is an important
aspect of analogjcal reasoning. In this case, the analogy turns out to be a
good dne, as we now describe. ’
The derivation of}; y], mxght g0 as follows

Expand | t‘ .mumpmonk even(x) a.ndfi”
cently mtroduced) definition of even:?®

¢ =2 a (for some a)f

!We use a somewhat informal style to present this example - just enough detail to
illustrate the ara.!ogy When we return to the exa.mpb: later in the book, we use «
xefut.a,tlon style for the example

?We use the following definition of even:

Vr.even(r)«—~3yg.z=2.y
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y=2-b (for some b)
Then mﬁltiply these equations:
z-y=(2-a)-(2-b) (1.3)
Then rearrange 1.3 to get:
z-y=2-{ea-(2-0)
and lastly reapply the definition of even, this time contgacting

it:
even(z - y)

Formula 1.2 can be proved in a similar way (i.e. 1.1 and 1.2 are analogous):

Expand the assumptions odd(z) and odd(y):
z=2-a+1 (for some a)

y=2-b+1 ({for some b)
Then multiply as before:

x-y=(2 a+1) 2(2-0+1)
Then fearrange (but this part is h&rder than befote)
z‘y§=2~(a-(2-b'+1)+b)+1
Lastly teapply the definition of odd as before, obtaining:
odd(z - y) .
‘

* In overall shapé, and niany details, these two proofs are very similar. Just
Cas the first proof helps the student to find the second, wewould hope that an
a.nalogy system ‘would be able to use the first as guidance in its search for a
proof of the second. Intnitively, the guidance is encapsulated in expressions
guch as ‘multiply as ‘before’: at each Intermediate stage. a problem solver
(human or machine) would find that were many possible steps that could be
made. The base proof can be used to sugeem which one of these should be
made. Notice thap the snalogy does not amourntsjimply to applying the same
» sequence of operstors that worked s the base (slthough this does sometimes
work). For exad;pIe, ¢xpansion and contractxon of the defihition of even is
replaced by those for.odd — here the proofs ave correspondingly different.
- More seriously, the rearrangement stages of the two proofs are quite different:
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for the target this stage involves six basic steps, whereas there was just one
for the base. For this stage, the base proof is not much help, and the student
(or machine) must do more work. So the proofs are not precisely analogous,
but enough so for the analogy to be useful. The analogist® must be able to
follow the base proof where it is useful, while being prepared to fill in gaps
where it is not. It is a challenge for the designers of analogy systems to
achieve this behaviour. We describe how this has been attempted in a later
chapter.

Before we move on to the next example, notice one more thing: we
described the base proof in a way that also validly describes the target proof
(once it is found): there are corresponding stages, and the description of
the ‘rearrange’ stage is chosen so that it applies to the corresponding target
stage. Sometimes humans are given similar descriptions to work with, which
may be helpful; sometimes there are no such descriptions, or the descriptions
given turn out to be misleading. Indeed, sometimes a person is able to form
a common description as a result of applying the analogy; these descriptions
can be an important part of the learning gained from the analogical problem
solving.

Boolean algebra

In Boolean algebra, there is a well known duality between meet (U) and join
(N).* Consider, for example, the following two theorems:

Base zUz

TARGET zNz

z

The base~states that U is idempotent; the target that N is also. The
structural correspondence shown indicates the analogy. Figure 1.2 shows
refutation proofs of both theorems side by side.5 All the steps of the proofs

*We use the term analogist to refer to the person or machine who is reasoning by ™
" analogy.

*The meet and join functions of Boolean algebra are w..tten N and U l'espect-ﬂﬁk to
distinguish them from the logical connectives A and V. e S

*For those not familiar with refutation proofs, here is a brief explanation. I W
is to prove a universally quantified statement such as z Uz = z, we first assume thmp 3§
is false; that is, that there exists an a such that ~a Ua = a (fizst line of base pracf). We
then draw consequences from this assumption until a contradiction is’ reached (nil, last
line). This means that our assumption of the existence of such an a was false; or, that’
the theorem is true. Note that the constant @ introduced is arbitrary; that is, we are ;oi
allowed to assume anything about it durmg the proof.
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are shown. It is easy to see ‘t'ﬁ;at’ the proofs are structurally isomorphic, with
a ;napping that includes and extends that of the problem statements:

| moDC

I

| O=C DO
L2

We can regard the application of the analogy as being the extension of
the initial match between the problem statements to the complete proofs,
including the corresponding axioms that were applied. The analogy is per-
fect,.unlike that of the first example given. If the problem solver ‘was aware
of the formal duality within Boolean algebra, it could infer that the analogy
was bound to succeed without going through the application stage. If the
solver was not aware of the formal duality, it would need to go through the
application. In fact the success of the analogy could be used as a clue to

#% . the existence of the duality (this is similar to, though more formal than, the

. suggestion of the proof descriptions by the analogy in the-ﬁrs‘t example).

Lattice theory

We give a brief example to illustrate that even in perfect analogies we must
be prepared to permute the arguments to predicates or functions in a match.
Suppose that we are defining lattice operations in a partially ordered set with-
finite least upper and greatest lower bounds. We might define U and N as
follows: .

2Uy=lub(x,y) .

2Ny =glb(z,y)
where lub and glb are the least upper bound and greatest lower bound func-

tions respectively. Consider the analogy between the following properties of
the newly defined U and n:

z<zUy -

e

zNy<z

As above, this is a perfect analogy, and is part of the same duality as the
~previous example (we do not show the jsomorphic proofs here). But notice

. that to describe the problems as lsomo';pbzc we need 2 concept of isomor-

phism, which allows arguments of functions and predicates to be permuted.
i v - . : - ' " N

o,
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Base: zUz =2

~alUa=a

|

—~aUa=al0

TARGET: zNz ==

—~afNaea=a

B

—‘anazanl

|
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~aUa=aU(zNE) —aNa=aN(zUT)

-

‘ -‘aU.a fleuz)n(auz) "-\ana-—-(aﬂz)u(an?)

.ﬂ(lh.‘l..a?(abg)ﬂ‘l -uzﬂa:(aﬂa)UO
’ . maUa=alba —aNa=aNa »
2 |

e nil nil

i"ig'ure 1.2: Isomorphic proofs in Boole$§n algebra

We will see that a number of analogy researchers, ﬁivé defined the concept of
analogy match to exclude argument permutation. In such accoynts, there-
fore, even perfect analogies like'the current.one mgcluded, :

Notation for matches The current example irxdica.tes'the xi_éea fora more
detailed representation of symbolic correspondenc.s than the notation

<< ‘
which we have used so far. In this example, the arguments 1o < are per-
muted ard we may wish- t.g}encoae this important information in the corre-
spondence. We therefore.somehmes use thé more &etmled but less evocative
notation

FE

(S,S,[(l,z),(zgn) . .

3

o

S B
B
e ' i -
< L e
B s L A
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move(B, th JW:(C, B)
B -} c
on(B,C) “on(C, B)
on(C, table) on{ B, table)

[
-

Figure 1.3: Reversing a stack of two 1%

to indicate the argument pairings in an association. The third component of
the triple above gives the argument pairings — in this case the first argument
of the left symbol with the second of the right, and vice versa. The abave
association has different implications for an analogy system from

(€ <I0,0,@.2)

in which argument order is preserved. This is why the more elaborate no-
tation is sometimes necessary. We will switch fairly freely between the two
notations in this book. It is important that the reader understands the
equivalence.

The blocks world

For our next exa.mple, we visi{ the blocks world. Suppose that we know how
to reverse the posmqps 0{ m%baks one on top of the other. The start and
goal states and the o‘pea'ahoxxs nmhuqr for this are displayed in Figure 1.3.

Suppose now that we are set 4% task illustrated in Figure 1.4, We are
given a stack of three and asked'to comstruct a configuration in which the
stack is reversed. We can describe this problem as
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‘reverse a stack of three blocks’
just as we could have described the base problem as
. ‘reverse a stack of two blocks’

This strongly suggests an analogy as follows {here we use a correspon-
" dence between English sentences to stand for one between corresponding
formal descriptions):

reverse a stack of two blocks

|

reverse a stack of three blocks

- In a way, using these descriptions for the problems directly is cheating
or, at least, assuming sophistication in the problem solver: these descrip-
tions implicitly make a generalisation which encompasses the analogy. As
with the previous examples, we would like an analogy system to be able
to cope without being provided with the generalised description, rather the
straightforward ones given in Figures 1.3 and 1.4.

It is clear that there is no isomorphism between the descriptions of Fig-
ures 1.3 and 1.4 since they have different sizes and numbers of variables.
This makes the construction of the analogy harder than the earlier exam-
ples. We might attempt to associate the whole of the base with parts of
the target (i.e. pick two blocks in the target to correspond to those in the
base); but this approach fails to express the full analogy between the prob-
lems. In Chapter 4, we describe mechanisms by which the problems can be
re-expressed into formal versions of the English forms given above as part of
an attempt to construct an analogy match between them.

o If such re-expression can be performed on the problems, it is important
also to re-express the known base solution in terms similar to the new version
of the base problem. Specifically, we would like to describe the base solution
in terms of operations on a stack of blocks (in this case, two) rather than in
terms of applications of basic operations to specific blocks, as it is initially
presented to us. This will enable us to construct a corresponding plan for
the solution of the target. It turns out that these feats of re-expression can
be performed on this example and the target problem solved by application

of the plan. .

: This example is an instance of an important feature of analogical rea- '
soning: the perception of an analogy between two problems (or situations)
often Involves re-expressing their descriptions. To put it another way: the



