Parallel Logic Programming

Parallel Logic Programming

Evan Tick

The MIT Press
Cambridge, Massachusetts
London, England

©1991 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or information
storage and retrieval) withcut pernissivc 1n writing from the publisher.

This book was printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Tick, Evan, 1959
Parallel logic programming / Evan Tick.

p. cm. — (Logic programming)
Includes bibliographical references and index.
ISBN 0-262-20087-2
1. Parallel programming (Computer science) 2. Logic programming. I. Title. II.

Series.
QA76.642.T53 1991
004’.35—dc20

Y

91-2963
CIp

Logic Programming

Ehud Shapiro, editor
Koichi Furukawa, Jean-Louis Lassez, Fernando Pereira, and David H. D. Warren,
associate editors

The Art of Prolog: Advanced Programming Techniques, Leon Sterlmg and Ehud
Shapiro, 1986

Logic Programming: Proceedings of the Fourth International Conference (volumes 1
and 2), edited by Jean-Louis Lassez, 1987

Concurrent Prolog: Collected Papers (volumes 1 and 2), edited by Ehud Shapiro,
1987

Logic Programming: Proceedings of the Fifth International Conference and
Symposium (volumes 1 and 2), edited by Robert A. Kowalski and Kenneth A. Bowen,
1988

Constraint Satisfaction in Logic Programming, Pascal Van Hentanryck, 1989

Logic-Based Knowledge Representation, edxted by Peter Jackson, Han Relchgelt and
Frank van Harmelen, 1989

Logic Programming: Proceedings of the Sixth Internatwnal Conference, edited by
Giorgio Levi and Maurizio Martelli, 1989

Meta-Programming in Logic Programming, edited bjr Harvey Abramson and M. H.
Rogers, 1989

Logic Programming: Proceedings of the North Americen Conference 1989 (volumes
1 and 2), edited by Ewing L. Lusk and"Ress'A. Overbseki\1989

Logic Programming: Proceedings of the 1930 North-Xomfrican Conference, edited by
Saumya Debray and Manuel Hermenegildo; 199¢

. Logic Programming: Proceedings of the Sevensh#ernational Conference, edited by
David H. D. Warren and Peter Szeredi, 1990

Prolog VLSI Implementations, Pierluigi Civera, Gianluca Piccinini, and Maurizio
Zamboni, 1990

The Craft of Prolog, Richard A. O’Keefe, 1990
The Practice of Prolog, edited by Leon S. Sterling, 1990

Eco-Logic: Logzc-Based Approaches to Ecological Modelling, David Robertson, Alan
Bundy, Robert Muetzelfeldt, Mandy Haggith, and Michael Uschold, 1991

Warren’s Abstract Machine: A Tutorial Reconstruction, Hassan Ait Kacl, 1991
Parallel Logic Programming, Evan Tick, 1991

Series Foreword

The logic programming approach to computing investigates the use of logic as a pro-
gramming language and explores computational models based on controlled deduction.

The field of logic programming has seen a tremendous growth in the last several years,
both in depth and scope. This growth is reflected in the number of articles, journals,
theses, books, workshops, and conferences devoted to the subject. The MIT Press Series
in Logic Programming was created to accommodate this development and to nurture it.
1t is dedicated to the publication of high-quality textbooks, monographs, collections, and
proceedings in logic programming. ’

Ehud Shapiro
The Weizmann Institute of Science ‘
Rehovot, Fsrael A

Preface

People have been parallel programming for years on a wide variety of dua.l—proceésor
mainframes, loosely-coupled distributed multiprocessors, array processors, vector ma-
chines. datattow machines, shared-memory muitiprocessors, etc. Yet in all these years,
some of us found it hard to get excited about parallelism because there were few if any
high-class paraliel programming languages implemented on these machines. The lack of
sich langnages was not completely due to lack of technology—the push to parallelize
FORTRAN and other algorithmic languages was and still is very strong. What is a high-
lass language Tt is a language that is natural for programming, all considerations of
parallclim aside. We do net wish to trade away anything to gain performance improve-
ment in exploiting parallelism: not declarativity, not clean semantics, not modularity,
not correciness, not conciseness, nothing. '

This book is an introduction to parallel logic programming languages, one (but not
the only)-family of high-class languages. The key development that inspired this book
was the implementation of parallel logie programming languages on commercial shared-
memory multiprocessors. Without the ability to measure actual performance tradeoffs,
there is little point in writing a textbook about parallel processing as opposed to concur-
rent programming. Discussions of the beauty of concurrent semantics or the abundance
of theoretical parallelism are only precursors to the acid test: the ability to achieve abso-
Jute performance improvement over the best sequential algorithms, as proved by timing
statistics on real machines. ;

This book began at the Institute of New Generation Computer Technology (ICOT) as
a series of performance benchmarks. The material was further developed concurrently
with teaching the subject as a semester graduate course at the University of Tokyo during
Spring 1989, and a quarter course at the University of Oregon during Summer 1990.
The main purpose of these courses was to give the students experience in programming
multiprocessors. Within two weeks students, many of whom had little experience with
logic programming, were writing pa.ra.llef programs and getting real speedups. This book
should aid in developing a course wherein substantial parallel programming projects can
be tackled by the students. Several such projects are suggested here. Prior knowledge
of logic programming is not required; however, a strong programming background is
desirable. The software systems used in this book, or ones similar to them, are available
on a variety of multiprocessors.

It is time to make parallel programming as exciting as it should have been from the
beginning.

Acknowledgments

Part of this book was written while I was a visiting researcher at the Institute of New
Generation Computer Technology (ICOT) supported by a grant from the U.S. National
Science Foundation. I thank Director Kazuhiro Fuchi and Dr. Sunichi Uchida of ICOT
for their support of this work. I greatly enjoyed both working and socializing with
the many researchers of ICOT’s Fourth Research Laboratory. Especially helpful was
Masatoshi Sato from the Oki Electric Industry Co. Ltd. who developed the real-parallel
FGHC system on the Sequent multiprocessor. I apologize to him for taking the liberty
of renaming his KL1PS system to Panda! Stimulating looks at the “big picture” with
Manuel Hermenegildo, now at the University of Madrid, and Jim Crammond, now at
Quintus Computer Systems Inc., were made possible by their separate visits to ICOT. I
also thank Ewing Lusk and Ross ‘Qverbeek from the Argonne National Lahoratory, and
Andrej Ciepielewski from the Swedish Institute of Computer Science, for their help with
the Aurora system. , '

The remainder of this book was written at the University of Tokyo and at the University
of O1 son. At Todai I was supported by a chair in Information Science endowed by the
CSK Corporation. 1 thank my graduate students at Todai who overcame their public-
university morass and worked quite-hard. During summer 1990, Andrzej Ciepielewski
visited the University of Oregon and used the text in his course, Andrzej and his students,
notably Peter Adamson and Dae Yeon Park, were of invaluable assistance in correcting
the text.

I thank Mark Korsloot from the Delft University of Technology, Kish Shen from Cam-
bridge Uuniversity, and Tim Lindholm from Quintus for their extensive comments on
early drafts of this book. Sections 13.4 and Appendix B were greatly aided by help from
Reem Bahgat from Imperial College, Daniel Dure from the French Ministry of Indus-
try (on leave from Ecole Normale Supérieure), Rong Yang from Bristol University, and
Kzoru Yoshids from ICOT. Lisa James, from the University of Oregon, did excellent
copy-editing of the book. ‘

Contents

11

1.2
1.3

2.2

2.3

24

2.5

Series Foreword
Preface

Acknowledgments

Introduction

Some Pragmatics

1.1.1 Programming in UNIX
1.1.2 Programming With Monitors
1.1.3 Programming in Parallel Lisp .

Parallelism and Concurrency

Measuring Parallel Performance

Prolog and FGHC

Prolog

2.1.1 Programming Objects

2.1.2 Informal Semantics

2.1.3 Extra-Logical Features and Builtins
2.14 OR-Parallel Execution Model

2.1.5 Programming Paradigms: Difference Lists
Flat Guarded Horn Clauses

2.2.1 Programming Objects

2.22 Informal Semantics

223 Extra-Logical Features and Builtins
2.24 Programming Paradigms

225 Other Committed-Choice Languages
Programming Style

2.3.1 Converting Nondeterminate into Deterfainate Code

2.3.2 Generic Procedures and Modularity
2.3.3 Order of Evaluation and Speculative Parallelism

Architectures

2.4.1 Overview of Aurora and Panda
2.4.2 Statistics

Summary

[l S S [

14

19

19

19
21
25
28
29

33
33

45
49

49
51

- 53

56
57

66

3.1
3.2
3.3
34
3.5
3.6

4.2

43

Small Programs
Appending

Reversing

Sorting

Stacking and Queueing
Filtering

Summary

More Small Programs

Permuting and Combining

4.1.1 Permuting in OR-Parallel Prolog

412 Combining in FGHC: Eager Evaluation
4.1.3 Bounded-Buffer Communication

4.14 Lazy Evaluation

4.1.5 Prolog Revisited

Merging

42.1 Simple Merge
4.2.2 Splitting

423 Cross Products

Summary

N-Queens

Prolog Versxons

5.1.1 Naive Generate & Test
5.1.2 Fused Generate & Test
5.1.3 Consttmnﬁs

5.14 More Congtrmnts

Contents

71
71
75
77
81

87

21

91

91
92
97
99
102

104

-105
106
108

109

117

119

119
122
124
127

Contents

5.2.

5.3

5.4
5.5

6.2

6.3

7.2

7.3

FGHC Versions

5.2.1 Candidates and Noncandidates

5.2.2 Continuation-Based Machine Translation

5.2.3 Distributed Process Structure

5.2.4 Pipelined Filters

5.2.5 Layered Streams

5.2.6 Throttling Eager Evaluation in Layered Streams

Single and Multiple Solution Search

5.3.1
5.3.2

Parallel Cut in OR-Prolog

Termination Flags and Lazy Evaluation in FGHC

Discussion

Summary

Isomorphic Trees and NAND Circuits

Isomorphic Trees .

6.1.1 = Nondeterminate Algorithms in Prolog
6.1.2 Determinate Algorithm in FGHC

6.1.3 Prolog Revisited: Determinate: Algonthm
6.14 Discussion; Complexity = = -

NAND-Gate Circuit Designer

6.2.1 Nondeterminate Algorithm in Prolog
6.2.2 Determinate Algorithm in FGHC
6.2.3 Dist:ussio'n

Summa.ry iy

'Ihangle and MasterMind

- Triangle ,
7.1.1 Structure Copying
7.1.2 List Copying
7.1.3 Discussion
MasterMind
7.2.1 Naive Generate & Test
7.2.2 Fused Generate & Test
7.2.3 Discussion
Summary

129

129
133
139
143
147
150

151

151
152

158
165

169

169

170
172
175
175

178
179
184
187

190

197

197

199
200
202

207
209
211

- 214

Contents

8 Zebra, Salt and Mustard 219
8.1 Zebras ‘ ‘ 219
8.2 Salt and Mustard 299
8.3 Summary 236
9 Instant Insanity and Turtles ' 241
9.1 Instant Insanity : 241
9.1.1 Fused Generate & Test ' 242
9.1.2 Naive Generat> & Test 246
9.1.3 Serialization by Short-Circuit Chain . 248
9.1.4 Bounded-Bufter Communication 250
9.1.5 Pipelined Filters ' 251
9.1.6 Layered Streams 256
9.1.7 Degencrate Candidates & Noncandidates 259
9.1.8 Complexity ' 259
9.1.9 Discussion 263
9.2 Turtles v ; 266
9.21 Fuved Generate ! Test Co 266
9.2.2 Candidates & Noncandidates ; 269
9.23 Pipelined Filters . o ; 272
9.2.4 Lavered'Streams: R ' 275
9.2.5 Discussion : 277
9.3 Sumnmary . 281
10 Puzzle and Waltz 285
10.1 Puzzle 286
1011 List Representation: Board Copying in Prolog 287
10.1.2 Structure Representation: Constraints in Prolog 289
1.1.3 Board Copying in FGHC _ 292
10.1.4 Discassion . 299
10.2 Witz 300
10.2.1 Logical Constraiuzs , 302
10:2.2 Layered Streams » 305
10.2.3 Discussion 312

10.3 Slunmar‘y 314

Contents

11
11.1

i1.2

12
121
12.2
12.3
124
12.5
12.6
12.7
12.8

13
13.1

13.2
13.3

Semigroup and Pascal’s Triangle

Semigroup

11.1.1 Sequential Prolog

11.1.2 Granularity Collection
11.1.3 Pipelined Generator/Filters
11.1.4 TImproving the Pipeline Throughput
11.1.5 Binary Hash Tree Filter
11.1.6 Discussion

Pascal’s Triangle

11.2.1 Sequential Prolog

11.2.2 Pairwise Addition

11.2.3 AND-in-OR Parallelisin
11.2.4 Granularity Collection
11.2.5 Discussion

3 Suminary

BestPath

Johnson-Dijkstra in Prolog

How Not to Program in FGHC

Dijkstra’s Algorithm with an Active Heap
Monitor Evaluation

Distributed Nearest Neighbors

Mergers Revisited

Partitioned Moore

Discussion and Summary

Summary and Conclusions

Programming Techniques

13.1.1 OR-Parallel Prolog
13.1.2 AND-Parallel FGHC

How Easy Was it to Write These Progranis?

Empirical Results

323

324
325
330
334
337
338
342

344

345
349
350
353
356

359
365
367
374
376
381
384
388
390
396 |

405

405

405
407

411
413

13.4 Directions in Parallel Logic Programming

o

13.41 A’UM
13.4.2 Pandore
13.4.3 Andorr:

Aurora and Panda Instruction Sets
Programming Projects

Glossary

Bibliography

Inde:.

Contents

423
424

427
431
435
451
465

471
481

1 Introduction

“Two things, however, are impressed on novices: that all experiences are of

equal spiritual significance (drudgery is divine); and that reasoning is futile.

Zen holds that nobody can actually think himself into a state of
enlightenment, stlll less depend on the logical arguments of others.”

R.H.P. Mason and J.G. Caiger

A History of Japan

C.E. Tuttle Co., Inc. 1973

One of the most difficult problems with developing parallel processing systems
is the job of parallel programming. By parallel programming we mean the pro-
gramming of a single application to execute efficiently on multiple processors. The
problem with parallel programming has been finessed, to some degree, by imple-
menting sequential languages like FORTRAN on suitable multiprocessors, such
as .pipelined machines (e.g., CDC 6600), vector machines (e.g., CRAY-1), MIMD
(multiple-instruction stream multiple-data stream) shared-memory machines (e.g.,
Alliant FX/8), and even MIMD pipelined machines (e.g., Denelcor HEP). The main
reason for using sequential languages is the massive amount of code already written
in those languages, as well as offioading the responsibility for “thinking in parallel”
from the programmer to the compiler. The problem with sequential languages of
the FORTRAN generation is that insufficient parallelism can be exploited from
automatic translation alone [97).

_ From the genes of FORTRAN and ALGOL came families of imperative (procedu-

¥tal) parallel programming languages, e.g., Pascal Plus, Modula-2, Ada, apd occam;

~ and applicative parallel programming languages, e.g., SISAL, VAL, ahd*m These

" languages use various methods of implementing parallel tasks, brmmple the
‘mutual exclusion of shared data updates and synchronization between tasks. The
famxheswmdevelopedpnmmﬂytoﬁntheneedﬁwdemgnhngmtbatmld
easily and clearly express parallelism.

While these families were being developed, and even earlier, oﬂm'hnm«ia- :
signers were more concerned with designing languages that could easily and clearly -
“txpress the problem to be solved. Examples of this latter family of languages aie *
Lisp, Prolog, APL, and Smalltalk. Only recently have the two directions in lan-
guage research met. Two major developmentshavebeenthemplementatimof
parallel Lisp-like languages, e.g., Qlisp, MultiLisp, and MultiScheme, and parallel
Prolog-like languages,- e.g., Restricted AND-Parallel Prolog, OR-Parallel)
Flat Guarded Horn Clauses (FGHC), Flat Concurrent Prolog (FCP), and Parlog. '

Thlsbooklsabouthowtoprogrammtwooftheselfmguags OR-parallel Prolog
and AND-paraliel FGHC. Mastery of these two languages should easily facilitate

2 Chapter 1. Introduction

the grasp of others. In addition, as Prolog offers a logical and ciean approach to
understandmg programming in general, parallel Prolog-like languages (i.e., parallel
Horn-clause logic-programming languages) offer a logical and clean approach to
understanding the requiremeﬁts of mutual exclusion and synchronization required
by asynchronous parallel programming in general. Thus this beok is an introduction
both to logic programming and to parallel programming. Extensive programming
exemples are given, and their performance is analyzed using data collected.on
real shared-memory multiprocessor- 1mplementa<txons Performance data, although-
specific to these implementations and hardware hosts, is critical to.understanding
the tradeoffs in parallel programming. In many cases, we can abstract away the
specific details of the system implementations and make concrete statements about -
efficient techniques for programming in these la.nguages v

Loglc programming, the paradigm of using first-order logic as the foundation of a
progra.mmmg language, is most popularly espoused in the form of Prolog. Prolog is
a sequential language based on Horn-clause logic.! Prolog differs from procedural
languages because it uses backtracking and unification, and is single assignment
(within the scope of a cla.use) Prolog differs from functional languages in that-
Prolog has two-way umﬁca.tlon, allowmg a prooedute to be executed in alternatlve
modes. For example, a sorting program can be “run backwards” to produce permu-
tations. Logic programming languages are distinct from almost all other langyages
in that logic programming languages naturally express a large number of different
types of parallelism. The most renowned types are AND and OR parallelism. In
general, AND-parallehsm is the ability to execute two conjunctive tasks in par-
allel; OR-parallehsm is the ability to execute two disjunctive tasks in parallel. In
terms of logic programmmg, the task has the. gmmdanty of a goal execution, ie.,
a procedure call a.nd executlon v,

A goal execution is also called a reduction or loglcal mference 2 The most promis-
ing types of AND-parallelism are.restricted (sometimes called independent) and
stream. Restncted—AND—parallehsm avoids binding conflicts by guaranteeing, be- -
fore spawning para.llel goals that the goals will not attempt to bind the same vari-
able. Stream AND pa,rallehsm is the ability to stream partially- mstantaated data
structures from one conjunctive goal to the next. Bmdmg conflicts are avoided by

1Ob.\ectxons that’ Prolog is not sequentlal should be saved until Section 1.2. To avoid amblgmty
we sometimes write “sequential Prolog” meaning Prolog, as opposed to “AND-parallel Prolog” or
“OR-parallel Prolog.”

2Thus many systems claim petformance ﬁgures in terms of KLIPS - thousa.nds of logic infer-
encés per second.or KRPS - thousands of reductions per second. Beware however: not all logical

3 inferences are equal because different goals may require different amounts of computation. Thus
KLIPS is a very gross and often misleading metric.

suspending a goal when an input is unbound, and explicitly locking variables when
binding them. In addition to these major types of parallelism, there are several
other types, such as those described in Conery [33], Gregory [57], and Hermenegildo
i62].

Although the theoretical importance of the presence of these various types of par-
allelism in logic programming languages is importatt; without practical implemen-
tations these results will not produce realistic speedups on multiprocessors. If pro-
gramming becomes complex during the drive to efficiently implement these various
types of parallelism, then sight of the original goal (to provide a good programming
language that can be executed in parallel) will be lost. Thus logic programming
language designers have been walking a fine line over the past several years — try-
ing to exploit parallelism efficiently without weakening language semantics to the
point of making programming impossible.

This book analyzes two vastly different approaches to this problem: OR-parallel
Prolog and stream-AND-parallel FGHC (Flat Guarded Horn Clauses). Together,
these languages represent the current state-of-the-art in parallel logic programming
language design, in terms of both technology and programming methodologies.

On one hand, OR-parallel Prolog (also called “OR-Prolog” in this book) retains
all the power of sequential Prolog, but exploits only the OR-parallel execution
of nondeterminate clauses. OR-parallel execution involves running completely in-
dependent processés that cannot communicate with each other in any way. Any
interrelated analysis of the solutions must be conducted on the group of solutions
after the solutions have been constructed. Collection of independent solutions is
performed in this book with the findall procedure. This builtin is an example of
an aggregation operator that evaluates a goal for all its possible solutions [86].

On the other hand, FGHC sacrifices the ability to backtrack, i.e., to produce
multiple solutions to nondeterminate problems, but exploits stream-AND-parallel
execution of all goals. FGHC allows communication between processes, which per-
mits the processes to collaborate during the search for solutions. However, the
added burdep of specifying communication often gives a arpgram the characteris-
tics of an Mrricate control structure. The program contr®structure is thus given
the euphemism “the process reading,” rather than the logical declarative reading.
FGHC can be considered in some sense representative of a class of committed-choice
languages including FCP [116], FLENG [89], Parlog [57, 35], Strand [49] and others.

rhis book is written as a programming primer, giving a progressive selection of
annotated programs written in both OR-parallel Prolog and FGHC. The programs
are used to expound certain programming techniques and pitfalls. In addition,
performance timings are presented as evidence of why one type of pragramming

k-

q Chapter 1. Introduction

methodology is better than another. These timings were collected from real par-
allel implementations of the languages on the Sequent Symmetry [95] and Encore
Multimax [46] shared-memory multiprocessors. The programs given in this book

. progress from a trivial list-appending program, to variations of the classics, such as

placing N queens on an N x N chessboard, to more advanced problems in semigroup
theory and graph theory.

The importance of parallel processing is generally accepted in both the computer
engineering community and the scientific (number-crunching) community. How-
ever, the importance of high-level programming languages is often neglected. Even
within the so-called centers of logic programming research, little emphasis has been
placed on developing sophisticated parallel debuggers or efficient optimizing com-
pilers. One reason is that the research field is still young. The lack of tools puts
greater emphasis on careful and efficient programaming style. This book is meant
as a guide to help “get it right the first time,” because it may be some time before
parallel programming environments approach those of sequential languages.

1.1 Some Pragmatics

Before eagerly jumping into the book, which is filled with possibly uncommon terms
such as clauses, guards, logical variables, and streams, let us first consider (with
tongue firmly in cheek) some examples’" of programming a multiprocessor in the
conventional way. The three examples given, in increasing order of sophistication,
speak for themselves.

1.1.1 P:_'ogramming in UNIX

Figure 1.1 shows a manual page taken verbatim from the operating system of the
Encore Multimax (UMAX 4.2) [46]. This particular page is concerned with spawn-

ing a parallel task from within a ‘C’ program. Especxally amusing is the restriction
concerning printf.

1.1.2 Programming With Monitors

Lusk et al. [77] give a clean, hierarchical approach to writing programs, for commer-
cially available shared-memory multiprocessors, with monitors. Even though the
‘C’ language is used, the hierarchical use of macros keeps the programs uncluttered
and portable. To explain the use of monitors, we review an example taken from
Lusk et al.: a program which adds two vectgrs of integers (what could be simpler?).
We present the ‘C’ program below without detailed explanation in order to give

