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Preface

People have been parallel programming for years on a wide variety of dua.l—proceésor
mainframes, loosely-coupled distributed multiprocessors, array processors, vector ma-
chines. datattow machines, shared-memory muitiprocessors, etc. Yet in all these years,
some of us found it hard to get excited about parallelism because there were few if any
high-class paraliel programming languages implemented on these machines. The lack of
sich langnages was not completely due to lack of technology—the push to parallelize
FORTRAN and other algorithmic languages was and still is very strong. What is a high-
lass language Tt is a language that is natural for programming, all considerations of
parallclim aside. We do net wish to trade away anything to gain performance improve-
ment in exploiting parallelism: not declarativity, not clean semantics, not modularity,
not correciness, not conciseness, nothing. '

This book is an introduction to parallel logic programming languages, one (but not
the only)-family of high-class languages. The key development that inspired this book
was the implementation of parallel logie programming languages on commercial shared-
memory multiprocessors. Without the ability to measure actual performance tradeoffs,
there is little point in writing a textbook about parallel processing as opposed to concur-
rent programming. Discussions of the beauty of concurrent semantics or the abundance
of theoretical parallelism are only precursors to the acid test: the ability to achieve abso-
Jute performance improvement over the best sequential algorithms, as proved by timing
statistics on real machines. ;

This book began at the Institute of New Generation Computer Technology (ICOT) as
a series of performance benchmarks. The material was further developed concurrently
with teaching the subject as a semester graduate course at the University of Tokyo during
Spring 1989, and a quarter course at the University of Oregon during Summer 1990.
The main purpose of these courses was to give the students experience in programming
multiprocessors. Within two weeks students, many of whom had little experience with
logic programming, were writing pa.ra.llef programs and getting real speedups. This book
should aid in developing a course wherein substantial parallel programming projects can
be tackled by the students. Several such projects are suggested here. Prior knowledge
of logic programming is not required; however, a strong programming background is
desirable. The software systems used in this book, or ones similar to them, are available
on a variety of multiprocessors.

It is time to make parallel programming as exciting as it should have been from the
beginning.
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1 Introduction

“Two things, however, are impressed on novices: that all experiences are of

equal spiritual significance (drudgery is divine); and that reasoning is futile.

Zen holds that nobody can actually think himself into a state of
enlightenment, stlll less depend on the logical arguments of others.”

R.H.P. Mason and J.G. Caiger

A History of Japan

C.E. Tuttle Co., Inc. 1973

One of the most difficult problems with developing parallel processing systems
is the job of parallel programming. By parallel programming we mean the pro-
gramming of a single application to execute efficiently on multiple processors. The
problem with parallel programming has been finessed, to some degree, by imple-
menting sequential languages like FORTRAN on suitable multiprocessors, such
as .pipelined machines (e.g., CDC 6600), vector machines (e.g., CRAY-1), MIMD
(multiple-instruction stream multiple-data stream) shared-memory machines (e.g.,
Alliant FX/8), and even MIMD pipelined machines (e.g., Denelcor HEP). The main
reason for using sequential languages is the massive amount of code already written
in those languages, as well as offioading the responsibility for “thinking in parallel”
from the programmer to the compiler. The problem with sequential languages of
the FORTRAN generation is that insufficient parallelism can be exploited from
automatic translation alone [97).

_ From the genes of FORTRAN and ALGOL came families of imperative (procedu-

¥tal) parallel programming languages, e.g., Pascal Plus, Modula-2, Ada, apd occam;

~ and applicative parallel programming languages, e.g., SISAL, VAL, ahd*m These

" languages use various methods of implementing parallel tasks, brmmple the
‘mutual exclusion of shared data updates and synchronization between tasks. The
famxheswmdevelopedpnmmﬂytoﬁntheneedﬁwdemgnhngmtbatmld
easily and clearly express parallelism.

While these families were being developed, and even earlier, oﬂm'hnm«ia- :
signers were more concerned with designing languages that could easily and clearly -
“txpress the problem to be solved. Examples of this latter family of languages aie *
Lisp, Prolog, APL, and Smalltalk. Only recently have the two directions in lan-
guage research met. Two major developmentshavebeenthemplementatimof
parallel Lisp-like languages, e.g., Qlisp, MultiLisp, and MultiScheme, and parallel
Prolog-like languages,- e.g., Restricted AND-Parallel Prolog, OR-Parallel )
Flat Guarded Horn Clauses (FGHC), Flat Concurrent Prolog (FCP), and Parlog. '

Thlsbooklsabouthowtoprogrammtwooftheselfmguags OR-parallel Prolog
and AND-paraliel FGHC. Mastery of these two languages should easily facilitate



2 Chapter 1. Introduction

the grasp of others. In addition, as Prolog offers a logical and ciean approach to
understandmg programming in general, parallel Prolog-like languages (i.e., parallel
Horn-clause logic-programming languages) offer a logical and clean approach to
understanding the requiremeﬁts of mutual exclusion and synchronization required
by asynchronous parallel programming in general. Thus this beok is an introduction
both to logic programming and to parallel programming. Extensive programming
exemples are given, and their performance is analyzed using data collected.on
real shared-memory multiprocessor- 1mplementa<txons Performance data, although-
specific to these implementations and hardware hosts, is critical to.understanding
the tradeoffs in parallel programming. In many cases, we can abstract away the
specific details of the system implementations and make concrete statements about -
efficient techniques for programming in these la.nguages v

Loglc programming, the paradigm of using first-order logic as the foundation of a
progra.mmmg language, is most popularly espoused in the form of Prolog. Prolog is
a sequential language based on Horn-clause logic.! Prolog differs from procedural
languages because it uses backtracking and unification, and is single assignment
(within the scope of a cla.use) Prolog differs from functional languages in that-
Prolog has two-way umﬁca.tlon, allowmg a prooedute to be executed in alternatlve
modes. For example, a sorting program can be “run backwards” to produce permu-
tations. Logic programming languages are distinct from almost all other langyages
in that logic programming languages naturally express a large number of different
types of parallelism. The most renowned types are AND and OR parallelism. In
general, AND-parallehsm is the ability to execute two conjunctive tasks in par-
allel; OR-parallehsm is the ability to execute two disjunctive tasks in parallel. In
terms of logic programmmg, the task has the. gmmdanty of a goal execution, ie.,
a procedure call a.nd executlon v,

A goal execution is also called a reduction or loglcal mference 2 The most promis-
ing types of AND-parallelism are.restricted (sometimes called independent) and
stream. Restncted—AND—parallehsm avoids binding conflicts by guaranteeing, be- -
fore spawning para.llel goals that the goals will not attempt to bind the same vari-
able. Stream AND pa,rallehsm is the ability to stream partially- mstantaated data
structures from one conjunctive goal to the next. Bmdmg conflicts are avoided by

1Ob.\ectxons that’ Prolog is not sequentlal should be saved until Section 1.2. To avoid amblgmty
we sometimes write “sequential Prolog” meaning Prolog, as opposed to “AND-parallel Prolog” or
“OR-parallel Prolog.”

2Thus many systems claim petformance ﬁgures in terms of KLIPS - thousa.nds of logic infer-
encés per second.or KRPS - thousands of reductions per second. Beware however: not all logical

3 inferences are equal because different goals may require different amounts of computation. Thus
KLIPS is a very gross and often misleading metric.



suspending a goal when an input is unbound, and explicitly locking variables when
binding them. In addition to these major types of parallelism, there are several
other types, such as those described in Conery [33], Gregory [57], and Hermenegildo
i62].

Although the theoretical importance of the presence of these various types of par-
allelism in logic programming languages is importatt; without practical implemen-
tations these results will not produce realistic speedups on multiprocessors. If pro-
gramming becomes complex during the drive to efficiently implement these various
types of parallelism, then sight of the original goal (to provide a good programming
language that can be executed in parallel) will be lost. Thus logic programming
language designers have been walking a fine line over the past several years — try-
ing to exploit parallelism efficiently without weakening language semantics to the
point of making programming impossible.

This book analyzes two vastly different approaches to this problem: OR-parallel
Prolog and stream-AND-parallel FGHC (Flat Guarded Horn Clauses). Together,
these languages represent the current state-of-the-art in parallel logic programming
language design, in terms of both technology and programming methodologies.

On one hand, OR-parallel Prolog (also called “OR-Prolog” in this book) retains
all the power of sequential Prolog, but exploits only the OR-parallel execution
of nondeterminate clauses. OR-parallel execution involves running completely in-
dependent processés that cannot communicate with each other in any way. Any
interrelated analysis of the solutions must be conducted on the group of solutions
after the solutions have been constructed. Collection of independent solutions is
performed in this book with the findall procedure. This builtin is an example of
an aggregation operator that evaluates a goal for all its possible solutions [86].

On the other hand, FGHC sacrifices the ability to backtrack, i.e., to produce
multiple solutions to nondeterminate problems, but exploits stream-AND-parallel
execution of all goals. FGHC allows communication between processes, which per-
mits the processes to collaborate during the search for solutions. However, the
added burdep of specifying communication often gives a arpgram the characteris-
tics of an Mrricate control structure. The program contr®structure is thus given
the euphemism “the process reading,” rather than the logical declarative reading.
FGHC can be considered in some sense representative of a class of committed-choice
languages including FCP [116], FLENG [89], Parlog [57, 35], Strand [49] and others.

rhis book is written as a programming primer, giving a progressive selection of
annotated programs written in both OR-parallel Prolog and FGHC. The programs
are used to expound certain programming techniques and pitfalls. In addition,
performance timings are presented as evidence of why one type of pragramming

k-
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methodology is better than another. These timings were collected from real par-
allel implementations of the languages on the Sequent Symmetry [95] and Encore
Multimax [46] shared-memory multiprocessors. The programs given in this book

. progress from a trivial list-appending program, to variations of the classics, such as

placing N queens on an N x N chessboard, to more advanced problems in semigroup
theory and graph theory.

The importance of parallel processing is generally accepted in both the computer
engineering community and the scientific (number-crunching) community. How-
ever, the importance of high-level programming languages is often neglected. Even
within the so-called centers of logic programming research, little emphasis has been
placed on developing sophisticated parallel debuggers or efficient optimizing com-
pilers. One reason is that the research field is still young. The lack of tools puts
greater emphasis on careful and efficient programaming style. This book is meant
as a guide to help “get it right the first time,” because it may be some time before
parallel programming environments approach those of sequential languages.

1.1 Some Pragmatics

Before eagerly jumping into the book, which is filled with possibly uncommon terms
such as clauses, guards, logical variables, and streams, let us first consider (with
tongue firmly in cheek) some examples’" of programming a multiprocessor in the
conventional way. The three examples given, in increasing order of sophistication,
speak for themselves.

1.1.1 P:_'ogramming in UNIX

Figure 1.1 shows a manual page taken verbatim from the operating system of the
Encore Multimax (UMAX 4.2) [46]. This particular page is concerned with spawn-

ing a parallel task from within a ‘C’ program. Especxally amusing is the restriction
concerning printf.

1.1.2 Programming With Monitors

Lusk et al. [77] give a clean, hierarchical approach to writing programs, for commer-
cially available shared-memory multiprocessors, with monitors. Even though the
‘C’ language is used, the hierarchical use of macros keeps the programs uncluttered
and portable. To explain the use of monitors, we review an example taken from
Lusk et al.: a program which adds two vectgrs of integers (what could be simpler?).
We present the ‘C’ program below without detailed explanation in order to give



