MANAGING THE SYSTEM

LIFE CYCLE
Second Edition

Edward Yourdon

MANAGING THE SYSTEM
LIFE CYCLE

Second Edition

Edward Yourdon

YOURIDN PRESS
A Prentice Hall Company
Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

YOURDON, EDWARD.
Managing the system life cycie.

(Yourdon Press computing series)

Bibliography: p.

Includes index.

1. Computer software—Develop M
2. Electronic data processing—Structured techniques.
I Title. 1. Seres.
QA76.76.D47 1988 005.1 87-23001
ISBN 0-13-547530-9

Editorial/production supervision

and interior design: Richard Woods and Barbara Marttine
Cover design: Wanda Lubelska Designs
Manufacturing buyer: Richard Washburn

= ©1988 by Prentice Hall
== A Division of Simon & Schuster
= Englewood Cliffs, New Jersey 07632

’

The publisher offers discounts on this book when ordered
in bulk quantities. For more information, write:

t Special Sales/College Marketing
Prentice Hall
College Technical and Reference Division
Englewood Cliffs, NJ 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

10 9 87 6 5 4 3 21

ISBN 0-13-547530-9 025§

PRENTICE-HALL INTERNATIONAL (UK) LIMITED, London
PRENTICE-HALL OF AUSTRALIA PTY. LIMITED, Sydney
PRENTICE-HALL CANADA INC., Toronto :
PRENTICE-HALL HISPANOAMERICANA, S.A., Mexico
PRENTICE-HALL OF INDIA PRIVATE LIMITED, New Delhi
PRENTICE-HALL OF JAPAN, INC., Tokyo

SIMON & SCHUSTER Asia PTE. L1D., Singapore

EDITORA PRENTICE-HALL DO BRASIL, LTDA., Rio de Janeiro

Preface

Much has happened since the first edition of this book was published
in 1982. This is inevitable in the computer field, of course, and I expect that
significant changes will continue to occur through the rest of this decade and
well into the 1990s. A

This book is about the management of systems development projects
that use such “‘structured’’ techniques as structured analysis, structured design,
and structured programming. When I began writing the first edition of this
book around 1980, structured programming was widely accepted and struc-
tured design was widely discussed, but structured analysis—probably the most
important of the structured techniques—was not in common use at all. Now,
in the late 1980s, all these structured techniques are well understood by com-
puter programmers and systems analysts and have been used to help build
thousands of computer systems around the world.

However, the structured techniques themselves have evolved and changed
during this period, and those changes are reflected in this new edition. Prob-
ably the most important change is the incorporation of data modeling into
a set of systems analysis techniques that previously concentrated almost
exclusively on function modeling; today’s system models include, along with
the familiar data flow diagrams, various forms of entity relationship diagrams,
which replace the data structured diagrams associated with the “‘classical’’
structured techniques of the late 1970s and early 1980s. Modern structured
analysis also has tools for modeling the time-dependent behavior of systems

-

x Preface

(using state transition diagrams, sometimes known as ‘“finite-state diagrams’’)
and can thus be used on real-time systems as well as on the classical business-
oriented systems. :

There have also been changes in the ‘“‘methodology’’ of structured
analysis. The first edition of this book emphasized a series of analysis activities
that led to four distinct models of a system: the ““current physical,’’ the *‘current
logical,”’ the ‘‘new logical,”” and the ‘‘new physical.”” Although there were
good reasons for asking the analyst to build these models, our experience in
the real-world use of these methods in hundreds of consulting projects during
the past several years has shown us the danger of spending too much time
modeling the user’s current system—a system that will of necessity be thrown
away and replaced. Consequently, this edition reflects the current view of struc-
tured analysis, in which the analyst is asked to begin with a model of what
the user’s new system must do.

Similarly, “‘classical’’ structured techniques of the late 1970s and early
1980s suggested that the model of user requirements could be transformed
directly into a model of code organizations; this was because most systems
built in those ancient times tended to be implemented as monolithic batch pro-
grams running on a single mainframe computer. This edition takes note of
the fact that many systems are implemented on a network of computers and
on a network of communicating processes (or ‘‘tasks’’ or ‘‘partitions,’’ etc.)
within each processor. Hence there are two intermediate design modeling
activities (one at the processor level, and one at the task level) before the con-
ventional structured design activity of producing structure charts is reached.

The concept of prototyping has also become popular in the past few years
and is discussed in this book. Though prototyping tools are an important
addition'to the ‘‘tool kit available to the project team, I continue to be con-
cerned that prototyping is being sold (often by the vendors who created the
software tools) as a panacea that will replace much of the work of structured
analysis with instant gratification. I remain convinced that many of the benefits
of prototyping can be achieved with the structured techniques; this is discussed
in Chapter 3.

Finally, we have seen the advent of many automated tools for systems
analysts and designers in the years since the first edition of this book was
publisheé. These tools, developed by such companies as Intech, Nastec,
Yourdon, Cadre, and Tektronix, enable the systems analyst and systems
designer to automate much of the graphics and text associated with the re-
quirements models and implementation models of a system. One could argue
that these tools do not change the project activities themselves or the way that -
the project activities are managed; indeed, the project team must carry out
systems analysis whether or not there is automated support, and the project
manager must ensure that the proper ‘‘products’ of systems analysis are

produced at the proper time. However, I am convinced that the quality of

Preface . xi

work produced by the systems analyst and designer will improve dramatically
with the use of such tools, and this will (indirectly) improve the manageability
of the project.

I have had the honor and good fortune to work with a number of ex-
cellent, dedicated data processing professionals during the years since the first
edition of this book was published; many of them have offered insights and
suggestions that have helped me tremendously in the preparation of this new
edition. I am especially grateful to Bob Spurgeon, William Wenker, and Eric
Blaustein for their careful reading of the draft manuscript and for their many
helpful suggestions. Finally, I would like to thank my wife and children for
their patience and forbearance while I sat hunched over my Macintosh com-
puter for days on end; they deserve a great deal of credit for helping create
this book. ‘

Introdu-ctiO'n

WHAT THIS BOOK IS ABOUT

The purpose of this book is to present a system life cycle for systems develop-
ment projects that makes use of structured systems development techniques,
in sufficient detail for you to use in a real project. In other words, this book
is designed to give you the necessary guidelines with which to organize, manage,
and control a systems development project—in particular one that makes use
of structured analysis, structured design, and structured programming.

Why should you read this book? Presumably because you’re looking
for a way to organize your systems development projects or because you’re
not satisfied with the methodology that you currently use. By the end of this
book, you will have learned the important activities and products associated
with a systems development project, and you should be able to apply the con-
cepts to your next project.

I also hope to shed some light on an issue that often generates loud,
emotional debates in many organizations, the issue of ‘‘methodologies.”’ Three
questions arise: Should our organization use a methodology? If so, what should
it look like? What should its components be?

A methodology, as we will use the term in this book, is a formal specifica-
tion of a system for building systems. It defines the pieces, or components,
of the system for building computerized information systems—that is, the
phases or activities that one finds in a typical software development project.
It also defines the interfaces between those components.

xiii

xiv introduction

You’ll also find that this book makes a distinction between a technical
model of the system for building systems and a managerial model. Most
methodology products and textbooks on project management concentrate
entirely on the latter: They tell the manager how to control and supervise the
activities in his project. But as my colleague Tom DeMarco points out, “You
can’t have a methodology without methods.”’ You can’t hope to organize,
manage, and control a systems development project unless you can describe
to your technicians—systems analysts, systems designers, database designers,
and programmers—what you expect them to be doing during various phases
of the project and what kind of technical products you expect them to deliver.
This book concentrates on that aspect of the methodology and places con-
siderably less emphasis on the classical control and supervisory aspects of
project management.

Throughout this book, I assume that you have had some prior exposure
to systems development projects, either as a programmer-analyst or as a project
leader. I hope that this book will be useful as well to high-level managers, train-
ing coordinators, university professors, presidents, and kings—but in my
mind’s eye, it’s the project leader responsible for project management whom
I’m addressing as I write these words.

WHAT THIS BOOK IS NOT ALL ABOUT

There are several things that I am definitely not attempting to accomplish in
this book.

® This book will not teach you how to be a manager. If you don’t know
how to manage and motivate human beings, don’t expect any help from
this book. If you don’t have a basic sense of delegation, organization,
and administration, I’m not sure you can obtain help from any book;
but you certainly won’t get any pearls of wisdom from this one! This
is, of course, a major issue for the programmer or systems analyst who
has just been promoted to the rank of project manager and is faced with
his first project. If you are in this situation, consult standard introduc-
tory texts on project management before you read this book.

® This book will not tell you how to organize your EDP or MIS depart-
ment. This book is concerned with the activities of an individual systems
development project; as you’ll see in Chapter 3 and the subsequent
chapters, we will talk about the interactions between the project team
and management end users (otherwise known as “‘clients,”’ ‘“‘customers,”’
or ““owners’’), and the operations department. But there is little or
nothing said about such things as a ‘‘steering committee’’ of users and
managers who help set priorities among the various projects in the

Introduction xv

organization. Nor is anything said about how the technicians in the EDP
or MIS department should be organized for maximum efficiency—
whether systems analysts and programmers should be separate groups
or whether development teams should be kept separate from maintenance
teams. However, the book will provide some comments on the impact
of the structured systems development techniques on the typical “‘life
cycle’’ that an EDP or MIS organization is likely to use.

® This book will not make you an expert in using structured systems
development techniques. If you’ve never heard of structured program-
ming or structured analysis, this is not the book to read. There are lots
of good books that will give you the basics; the discussion in Chapter 2,
for example, provides an overview and some references for additional
reading. But for the most part, this book assumes that you’re already
familiar with the basic concepts of structured analysis, structured design,
structured programming, top-down development, and walkthroughs.

* This book will not make you an expert estimator. 1 can’t estimate how
long it will take to build an underground house in a swamp—yet that’s
the sort of thing many of our end users and managers really want us
to do! Chapter 10 discusses some of the problems of scheduling and
estimating, but I should warn you in advance: There is no magic. For
more information on this area, I recommend that you consult some of
the classic books on software metrics, such as those by DeMarco (1982),
Boehm (1982), and Jones (1986) in the bibliography.

® This book will not help you solve political problems. Virtually everything
in this book assumes that you are a rational manager, that you have
rational programmers and systems analysts working for you, that you
deal with rational users and customers, and that the environment in which
you determine your schedules and manpower estimates is not only
rational but also friendly and supportive. I assume that you, your sub-
ordinates, your users, and your superiors are interested in producing a
“‘quality’’ information system—one that does what the user wants, and
does it in a reasonably economical, reliable, maintainable fashion. If
your environment is just the opposite—if, for example, you are reward-
ed solely for finishing your project on time, with no concern whatsoever
about the quality of the product—this book probably won’t help you.
If you have arbitrary and unreasonable deadlines imposed on you from
on high, or if you have users who refuse, on principle, to discuss their
requirements with you, you’re in deep trouble. Rather than reading this
book, I suggest that you consider polishing your résumé and looking
for a better place to work. As an alternative, consult such books at Block’s
Politics of Projects (1983) or Page-Jones’s Practical Project Manage-
ment (1985) for advice and guidance.

® This book will not provide you with a “‘religious’’ view of software

xvi Introduction

development. Many textbooks on project management, and most soft-
ware development methodology packages, take a hard-line approach to
the various activities that they identify in the project life cycle—that is,
they emphasize that the programmer-analyst must carry out tasks A,
B, and C in a certain sequence in all cases, under all conditions. That’s
understandable in the case of methodology products, whether purchased
for $50,000 or developed within the corporation for a cost sometimes
approaching $500,000. When that kind of money is involved, the person
who commits to the expenditure usually defends the package the same
way a wild animal defends its offspring against predators: ‘‘If you spend
all that money on the XYZ methodology package,’’ says the corporate
EDP manager, ‘‘you can be damned sure that every single one of my
programmers will memorize every page of it and follow it to the letter!”’
Considering the relatively low cost of this book, there should be no need
for religious mania—even if you discard 90 percent of the ideas in the
book, it won’t have cost you $500,000. Indeed, I will deliberately suggest
that you improvise in certain areas and that you fill in the details in other
areas based on your own experience, and I hope that you feel equally
free to ignore sections of this book that don’t apply to your own needs.

THE ORGANIZATION OF THIS BOOK

Now that I’ve given you a thumbnail sketch of what the book will and will
not provide, let me give you a slightly more detailed picture of the individual
chapters.

Chapters 1 and 2 serve as an introduction to the main subject. Chapter
1 compares the advantages and disadvantages of conventional systems develop-
ment projects, semistructured projects, and modern structured projects.
Chapter 2 contains a brief overview of the structured techniques themselves,
with suggested references in case you need more detail. If you’re already
“familiar with the structured techniques, and if you’re feeling eager to proceed,
turn directly to Chapter 3.

The heart of the book consists of seven chapters, 3 through 9. Chapter 3
gives an overview of the structured project life cycle and its component
activities. Chapters 4 through 8 discuss the major activities: survey, analysis,
design, and implementation. Chapter 9 addresses the final major activities,
including generation of user manuals, conversion of the database, installa-
tion of the system, and quality assurance.

The concluding chapter sums it all up, placing emphasis on the manager’s
special role and obligations. '

<

Contents

PREFACE
INTRODUCTION

1 CHANGES IN PROJECT MANAGEMENT

1.1
1.2

1.3

14
1.5

INTRODUCTION 1

CHARACTERISTICS OF CONVENTIONAL EDP
PROJECTS 4

CHARACTERISTICS OF STRUCTURED
PROJECTS 7

RECENT DEVELOPMENTS &8
SUMMARY 10

2 STRUCTURED TECHNIQUES

217
2.2
2.3
2.4
2.5
2.6

INTRODUCTION 12
STRUCTURED ANALYSIS 13
STRUCTURED DESIGN 23
STRUCTURED PROGRAMMING 33
TOP-DOWN DEVELOPMENT 35
PROGRAMMING TEAMS 37

-

/Xiii

12

vi

2.7

STRUCTURED WALKTHROUGHS 40

2.8 SUMMARY 41

THE STRUCTURED LIFE CYCLE

3.7
3.2
3.3
3.4
3.5
3.6

27

4.1
42
43

44
45

INTRODUCTION 42 '

THE CONCEPT OF A PROJECT LIFE CYCLE 43
THE CLASSICAL PROJECT LIFE CYCLE 45
THE SEMISTRUCTURED LIFE CYCLE 49

THE STRUCTURED PROJECT LIFE CYCLE 52

RADICAL VERSUS CONSERVATIVE TOP-DOWN
IMPLEMENTATION 56

THE PROTOTYPING LIFE CYCLE 59
SUMMARY 63

" ACTIVITY 1: SURVEY

INTRODUCTION 65 °
ACTIVITIES OF THE SURVEY 68

TOP-DOWN CHOICES FOR THE SURVEY
ACTIVITY 74

PROBLEMS TO ANTICIPATE 75
SUMMARY 76

ACTIVITY 2: ANALYSIS

5.1

5.2
5.3

54

. 55

5.6

INTRODUCTION 78

THE DETAILS OF ANALYSIS 81
MODELING THE CURRENT SYSTEM 94
TOP-DOWN CHOICES FOR ANAL YSIS 96
PROBLEMS WITH ANALYSIS 97
SUMMARY 98

Contents

42

78

Contents vl

6 ACTIVITY 3: DESIGN - 100

6.1 INTRODUCTION 100

6.2 COMPbNEIVTS OF THE DESIGN ACTIVITY 103
6.3 TOP-DOWN CHOICES FOR DESIGN 114

6.4 PROBLEMS WITH DESIGN 115

6.5 SUMMARY 116

7 ACTIVITY 4: IMPLEMENTATION 118

7.1 INTRODUCTION 118
7.2 THE STEPS OF IMPLEMENTATION 118

7.3 TOP-DOWN CHOICES FOR
IMPLEMENTATION 122

7.4 PROBLEMS WITH THE IMPLEMENTATION
ACTIVITY 123

7.5 SUMMARY 124

8 ACTIVITY 5: ACCEPTANCE TEST GENERATION 126

8.1 INTRODUCTION 126
8.2 STEPS OF ACCEPTANCE TEST GENERATION 127

8.3 TOP-DOWN OPTIONS FOR ACCEPTANCE
TESTING 134 .

8.4 PROBLEMS WITH GENERATION OF ACCEPTANCE
TESTS 134

85 SUMMARY 136

9 ACTIVITIES 6-9: THE FINAL ACTIVITIES 137

9.1 INTRODUCTION 137

9.2 ACTIVITY 6: QUALITY ASSURANCE 137

9.3 ACTIVITY 7: PROCEDURE DESCRIPTION 140
9.4 ACTIVITY 8: DATABASE CONVERSION 141

vili

10

9.5 ACTIVITY 9: INSTALLATION
9.6 SUMMARY 144

FINAL OBSERVATIONS

10.1 DOES.THE STRUCTURED APPROACH SOLVE

ALL THE PROBLEMS?

10.2, HOW MUCH TIME SHOULD BE DEVOTED TO

EACH ACTIVITY? 147

10.3 HOW CAN WE ENSURE THE QUALITY OF THE

ACTIVITIES?

10.4 HOW DO WE ORGANIZE OUR WORK FORCE TO
CARRY OUT THE ACTIVITIES?

148

146

143

150

—

105 WHAT ARE THE MAJOR THEMES OF THE

STR(!CTURED PROJECT LIFE CYCLE?

70.6 HOW SHOULD THE LIFE CYCLE BE

INTRODUCED?

BIBLIOGRAPHY

INDEX

151

150

Contents

146

1562

155

Changes

in Project Management

1.1 INTRODUCTION

As I indicated in the introductory chapter, this book is concerned with a
relatively new kind of life cycle for systems development projects—the struc-
tured project life cycle. It is also concerned with the proper use of structured
analysis, structured design, and structured programming in a systems develop-
ment project. Consequently, there is a strong implication that the new, struc-
tured kind of life cycle is in some way better than the conventional project
life cycle. And, similarly, that the use of structured analysis and related tech-
niques leads to far more successful projects than does the use of conventional
analysis and development techniques. Indeed, one of the premises of this book
is that the conventional projects tend to be over budget, behind schedule,
expensive to develop, expensive to maintain, unreliable, and unacceptable to
users.

Of course, these problems do not apply to a/l conventional EDP projects,
but the larger the scope and size of the project, the more likely it is to show
evidence of some or all the difficulties just listed. I think it is reasonable to
make the following observations about the relationship between the size of
a project and its complexity:

2 Changes in Project Management Chap. 1

. SIZE OF PROJECT LEVEL OF COMPLEXITYA
Up to 1,000 lines Trivial
1,000 to 10,000 lines Simple
10,001 to 100,000 lines Difficult

100,001 to 1,000,000 lines Complex
1,000,001 to 10,000,000 lines Nearly impossible
More than 10,000,000 lines Utterly absurd

(Obviously, lines of code is only one measure of complexity, and a
primitive one at best. However, it is adequate to illustrate my point in this
chapter.)

Trivial projects, defined in terms of lines of code, may not require any
formal project management. A computer program or system that involves only
a few hundred lines of code can usually be implemented by one person in a
period of a few days to a few weeks. Generally, all one wants to know at the
beginning of such projects is the deadline: “When is it going to be finished?”’
And even though structured analysis, structured design, and structured
programming can be of great benefit even in such small projects, the pro-
grammer—by brute force or just common sense—can get the job done using
conventional methods. If problems arise and the schedule slips, the manager
can always fall back on what my colleague Tom DeMarco calls “‘the time-
honored tradition of unpaid overtime’’: The manager can gently persuade the
programmer to work nights and weekends until the project is finished.

Indeed, much the same thing can be said about simple projects, those
* involving up to 10,000 lines of code. Such a project typically involves three
or four programmer-analysts for a period of 6 to 12 months. It’s large enough,
and it lasts long enough, for some kind of formal project management to be
necessary, but it’s the sort of project that a veteran manager has experienced
dozens of times in his career. Precisely because it is within the manager’s realm
of comprehension, he is able to organize, manage, and control it. And although
the project life cycle specified in this book is quite useful, managers will argue
that implementing such a formal discipline represents unnecessarily heavy ar-
tillery. Similarly, although the techniques of structured analysis, structured
design, and structured programming will lead to a more maintainable pro-
duct, their use may not speed up development time at all.!

However, projects involving between 10,001 and 100,000 lines of code—
projects that I categorize as difficult—are almost beyond the ability of the
manager to handle easily. Such a project can involve half a dozen to a dozen
programmers and can last two or three years. Formal project organization

'In general, proper use of the structured techniques will imbrove the productivity of the
development phase of a system by approximately 10 to 15 percent. However, maintenance costs
are usually reduced by a very substantial amount, usually ranging from a factor of 2 to a factor of 10.

Sec. 1.1 Introduction '3

is an obvious necessity, and'a formal approach to the analysis and design of
the EDP system is also usually essential. In most medium to large EDP
organizations, a project of this size will eventually finish—if only because the
organization continues to pour people and money into the project until it
staggers through to completion.? However, there is a nontrivial danger that
the project will be finished several months late and that it will exceed its budget
by tens of thousands or even hundreds of thousands of dollars. Consequently,
the techniques of structured analysis, design, and programming become
critically important; with the proper use of these techniques, there is a
'reasonable chance that the project can be completed on time and within the
stated budget. ' ‘

Perhaps more important than use of the techniques is the use of the struc-
tured project life cycle in projects of this size. A project involving up to 100,000
lines of code is sufficiently complex that neither the systems analyst nor the
user is likely to have a crystal-clear understanding of exactly what the system
is supposed to do, and even if there is a clear understanding, the user is likely
to change his mind about some of the requirements. Also, if the project lasts
two or three years, there is a reasonable chance that the environment—that
is, the technology, the local business conditions, the applicable government
regulations, and even the user himself—will change by the time the project -
is finished. Nevertheless, a veteran project manager may tell you that none
of these problems is insurmountable, that it’s all a question of ‘“‘good
management.”’

With complex projects, involving between 100,001 and 1,000,000 lines
of code, even the most battle-scarred veteran would admit tora certain amount
of nervousness. At this level of complexity, 50 to 100 people may be involved
in a project that can last three to five years or more. On such a project, many
members of the project team either will leave before it is finished or will be
hired in the middle, and there will be at least two levels of project manage-
ment. In addition, we can be reasonably sure that the system is not being built
for just one user or even one homogeneous group of users. Instead, there are
likely to be diverse (and often conflicting) communities of users, each of which
has its own local view of the requirements of the system.

If conventional development techniques are used in a project hrgcycle,
there is a good chance that (a) the project will never be finished, (b} it will
be finished so far behind schedule and so much over budget that it will damage
or ruin the manager’s career, (c) the user will reject the final system as being
unsuited to his needs, or (d) all of the above. Although the techniques espoused

‘However, in today’s turbulent business world, the user may not be willing to continue
spending money on a project once it gets substantially behind schedule or over budget. Various
surveys, including one by T. Capers Jones (1986), have reported that as many as 25 percent of
all DP projects never finish!

