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PREFACE

This book treats the interaction of radiation with matter, particular atten-
tion being paid to the laser. Knowledge is assumed of the usual half-year
introduction to quantum mechanics found in undergraduate physics curricula.
The material can be covered in two semesters, or, alternatively, the first part
(Chaps. 1-13) can be used as a one-semester course in which quantum-
mechanical aspects of the electromagnetic field are ignored. Each chapter is
accompanied by problems that illustrate the text and give useful (occasionally
new) results. '

Existing laser media are intrinsically quantum mechanical and are most
easily studied with the quantum theory. Understanding the laser along these
lines enlivens one’s understanding of quantum mechanics itself. In fact, the
material constitutes a viable, applied alternative for the usual second and
third semesters of quantum mechanics.

The text format lends itself quite weil to reference use, particularly with
regard to-the fundamental concepts of laser physics. There is leeway for some
detailed extensions, notably in the problems, but we have deliberately sacri-
ficed generality for the sake of clarity. An understanding of the simpler theo-
ries enables one to work with the more general extensions available in the
original literature or to treat new problems oneself.

With the exception of Chaps. 19 and 20, the laser theory discussed in this
book tends to follow the approaches of the Lamb school. Parallel work of the
Bell Telephone Laboratories group has been presented in the book by W. H.
Louisell, Quantum Statistical Properties of Radiation, (John Wiley & Sons,
New York, 1973), while H. Haken’s contribution, “Laser Theory,”” in Ency-
clopedia of Physics, Vol. XXV/2c, edited by S. Fliigge, Springer-Verlag, Ber-
lin, 1970; also Chap. 23 in Laser Handbook, gives a very complete account
of the Stuttgart work.

In keeping with the text format, no uniform attempt is made to assign
credit to the original papers. Rather, we have referred the reader to review
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Xiv PREFACE

articles and books which he might find useful for further study. Even in this
capacity, we do not give all possible references; A, E. Siegman’s list of laser
books (Appl. Opr., 18, A38, 1971) includes 135 entries alone and is 3 years
older than this book.

The first 13 chapters use the semiclassical theory of the interaction of
radiation with matter. For this, the atoms are assumed to obey the laws of
quantum mechanics and the field is governed by classical Maxwell equations.
Chapters 14 through 20 treat both field and atoms quantum mechanically,
More spectficaily, Chaps. 1 and 2 present basic quantum preliminaries.
Chapter 3 discusses classical and cuantum dipole moments and their inter-
action with electric fields. Chapter 4 traces historical analogs of some laser
phenomena from Huygens to Van der Pol. Chapter S applies the theory de-
veloped to the first maser, introducing important laser concepts like cavity
Q. saturated gain, and cavity tuning. Chapter 6 reviews quantum formalism
especially useful for Chaps. 14 through 20 (Dirac notation, Schrodinger,
interaction, and Heisenberg pictures). Chapter 7 introduces the  density
matrix, which is used to considerabie analytlcal and pedagogical advantage in
subsequent chapters.

Cliapters 8 through 11 develop the theory of the laser with single- and multi-
mode eleciromagnetic fields, with homogeneously and Doppler broadened
media, and with two mirror and ring cavities. The atoms are approximated by
two level systems, and the field is taken to be scalar. In Chap. 12 these re-
strictions are removed, and an applied DC magnetic field is.considered.
Chapter 13 treats pulse propagation, self-induced transparency, and photon
echo in terms of the semiclassical theory.

Chapter 14 presents the quantum theory of radiation in a form suitable for
treatment of the laser. The electromagnetic field is shown to consist of simple
harmonic oscillators with straightforward quantization rules. The Weisskopf-
Wigner theory of spontaneous emission is given as an important example. An
accompanying appendix deals with the phenomenon of superradiance. Chap-
ter 15 develops the coherent state—-the state most closely approximating the
classical electromagnetic field. The state provides not only a quantum-classical
bridge, but also an instructive formalism for the quantum laser. Chapter 16
defines the system-reservoir problem with the use of the reduced density oper-
ator. This problem is fundamental to all physical situations involving the in-
teraction of a system of interest with an environment having many degrees of
freedom. The techniques of Chaps. 14 through 16 are used in Chap. 17 to treat
the laser from a fully quantum-mechanical point of view, yielding the semi-
classical theory in the appropriatz limit and providing information about
photon statistics, laser linewidth, and buildup from noise. Chapter 18 dis-
cusses the theory of measurement as applied to laser problems. Chapter 19
revisits the system-reservoir problem from a Brownian motion viewpoint,
which is based on the Heisenberg picture of quantum mechanics. This ap-
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proach is employed in Chap. 26 to treat the laser. These two chapiers are
patterned after the work of Lax with suitable pedagogical modifications.
Chapter 21 provides an overview of laser physics, relating it to other subjects
in the field loosely called “quantum optics,” including. Josephson radiation.
In this connection, the approaches developed in the book are cminently ap-
plicable to laser problems; they are, furthermore, general and hence can often
be applied clsewhere. It is hoped that the reader can obtain from the book not
only an increased understanding of the laser, but also a more profound com-
prehension of many-system physical phenomena in general.
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au(t)

bi(t)

ca(t)

colt)

LASER THEORY NOTATION

annihilation operator (boson) .

creation operator (boson)

as subscript, refers to the upper level a of a two-
level atom

magnetic quantum numbers for level a

Bohr radius (0.53 &)

annihilation operator for mode s (boson)

general Heisenberg picture operator

set of quantum operators a1, . . ., Gu, . . . (nOt
necessarily annihilation operators)

energy eigenstate for level a

Einstein A4 coefficient

vector potential

slowly varying annihilation operator [a(t) =
A(t) exp (i21)) '

slowly varying operator for a, [a.(t) =
A,(t) exp(-iQut)) ‘

linear gain constant in quantum theory of laser

active medium linear absorption constant

complex linear gain coefficient in quantum
theory of laser

as subscript, refers to the lower level b of two
levels

annihilation operator for mode k

energy eigenstate of lower of two levels

Einstein B coefficient

. magnetic field

lowest-order saturation coefficient in quantum
theory of laser

complex saturation coefficient for %

effective magnetic field

speed of light (2.99793 x 108 m/sec)

probability amplitude for upper level a
(Schrodinger picture)

probability amplitude for lower level b
(Schrédinger picture)

xvil

(14.11)
(14.12)

2.14)
(Chap. 12)
1.27)
(14.41)
(19.52)

(19.52)
(6.46)
(2.38)
2.7

(19.33)

(19.58)
(17.13)
(17.58)

(20.49)

(2.14)
(19.24)
(6.46)
(2.38)
(8.2)

(17.14)

(20.50)
(1.77)

(6.71)

(6.72)



xvili LASER THEORY NOTATION
ca(t) probability amplitude for evergy level

(Schrédinger picture) (6.67)
Cal2), as above, but in interaction picture [Cz = .
Co(1),Ca{t) cz expl(iwszt)), x =a, b, n (2.14), (1.13)
Can(t) probability amplitude for atom in upper level,

field with n photons (interaction picture) (14.68)
Cny, mna,s- -~ fgs » - - = Cingp

probability amplitude for multimode field with

m photons in mode 1, ny photons in mode r.  (14.48)
Ca(t) in Sec. 10-3 and Prob. 8-1 only, eosine (in-phase)

component of polarization (8.61)
@ an(t)  probability amplitude for atom in upper state,

an n-photon laser field and vacuum otherwise

(interaction picture) - (L18)
c.c abbreviation for ‘““‘complex conjugate’
d constant term in mode-locking equation (9.58)
D displacement vector in Maxwell’s equations (8.2)
Dyy diffusion coefficient for Brownian motion (19.6)
D(p) phase diffusion coefficient in quantum theory -

laser (20.74)
D(a> displacement operator for coherent states" (15.61)
D(z, v, t) population difference for two-level systems (10.58)
D, drift coefficient for operator A, (19.60)
{Dwy diffusion coefficient for operators 4, and A4, (19.63)
D (4dw) complex denominator = 1/(yz + { 4w) (9.6)
Dy sums of complex denominators (E. 12)
D(w) density of free-field radiation states (14.101)
e electron charge = —1.9 x 10-12C (1.24)
en (e)*, n an integer _
é1, &2, &3 unit vectors in abstract Cartesian coordinate

system, used for the pictorial representation of

the density matrix (7.70)
Ey scalar electric field amplitude (2.13)
E(z, ©) plane wave electric field (8.8)
E(R, 1) electric field vector (2.6)
Ex(t) slowly varying Fourier amplitude for E(z, t) (8.8)
&(z, t) complex electric field envelope in pulse propa-

gation (13.1)
&) Positive frequency part of electric field E(¢) (16.36)
& electric field “per photon” (14.17)
E dimensionless electric field amplitude = v T (E. 11)



f(x)
N0

F(t)

Fu(t)
F(1t)

1
F3

F{f(x)}
&

g
g(w)
gs
Ega
4
ge
8ij
G

LASER THEORY NOTATION

arbitrary function of x

rapidly varying noise operator for annihilation
operator a(t)

slowly varying noise operator for A(t)
[£(e) = f(t) exp(i82t)]

slowly varying noise operator for A(¢)

random classical force on particle in Brownian

motion
first-order factor in laser cocfficients

third-order factor in laser coeflicients
Fourier transform of f(x)

real part of continued fraction in strong signal
theory

(19.32)

(19.34)
(19.60)

(19.2)
(Tables 8-1,
10-1)
(Tables 8-1,
10-1)
(15.48)

(E. 32)

coupling constant in quantum theory of radiation ([4.60)

coupling constant for frequency w
coupling constant for sth mode of field

Landé g factor for upper level of two-level atom

Landé g factor for lower level of two-level atom

electron g factor

(i, J = ) conductivity matrix elements

conductivity matrix (in ring and Zeeman laser
theory)

G(x, xo, t) Green’s function

G (x1, . .

.o x2n)
n-th orde; correlation function

Planck’s constant = 6.6256 x 10-34 joule-sec
Planck’s constant/2n = 1.027 x 10-34 joule-sec
magnetic field

magnitude of magnetic field H

y component of magnetic field

Hermite polynomial

total Hamiltonian

unperturbed Hamiltonian

classical energy

ST |

dimensionless intensity for nth mode
= $(@En/)? (ya y0) !

identity operator for matrix

(14.101)
(14.88)
(12.18)
(12.18)
(1.37)
(12.7)

(12.7)
(H. 17)

(15.59)

(1.6)
(1.34)
(1.34)
(14.7
(1.22)
2.1)
(2.1)

T (1.24)

(8.45)
(6.13)

xix



XX

Im(&)
1(z, 1)
F(z,t)

Jull7)
JG, Jb

'kn
K

Kn
Ku

Ll 1
Iz, 1y, I,
L

L

L,

- LASER THEORY NOTATION

imaginary part of 7

-intensity envelope in pulse propagation

partial energy integral

current density in Maxwell’s equations
nth-order Bessel function
angular momenta for upper and lower levels

Boltzmann’s constant = 1.38054 x 1023 J/°K

wave number = K, (when difference between
K,’s does not matter)

wave number for nth mode of electric field

= K times u: Doppler broadening constant -

locking parameters

lengths of x, y, and z dimensions in maser cavity
mirror separation in laser

orbital angular momentum vector

z component of orbital angular momentum L

Z»(w — v) dimensionless Lorentzian. = yz2/[ys% + (0 — v)?

Mz, v. 1)
My

<n(8)>
Ny
Ay

ﬁss

(x can be blank)

particle mass

mass constant for radiation field oscillator
population sum in strong-signal laser theory
nth-order moment in Langevin process

- energy eigenstate with eigenvalue #wy (usually

photon number state)
average number of photons
number of atoms in upper level (Einstein theory)
‘number of atoms in lower level (Einstein theory)

- steady-state average number of photons in laser

- field

.nr> = |{n}>, multimode ficld eigenstate

number of modes in multimode laser operation

 [or N(z, t), see below]

number of atoms in Langevin theory

average population inversion density

2/th component of the population inversion
density

population inversion density

number of atoms in upper and lower states

(13.28)
(13.32)

(8.2)
(9.101)
(Fig.12-2)

(3.38)
(8.5
(10.2)

(9.59), (9.54)
(523

(Fig. 8-2a)
(after (6.41))
(after (6.41))
(8.36)

(1.8)
(14.6)
(10.59)
(19.8)

(6.28)
(16.31)
(2.38)
(2.38)

(17.33)
(14.46)

(sec. 9-4)
(20.10)
(8.42)

(9.16)
(8.39)
(20.39)
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LASER THORY NOTATION

relative excitation

A wms A nm’ number factors in quantum theory of the laser

b
s
i

c

Py

P
| o

PGz, 1)

population inversion operator

normalization constant

set of index values whose corresponding field '
amplitudes are nonzero

arbitrary quantum-mechanical operator

probhability of n photons

particle momentum

polarization vector in Maxwell’s equations
scalar polarization of medium

P(a), P(a,t)diagonal coherent state representation of

P(x, 1)

density operator
probability density for a particle at x (time t)

P(x, y), P(r, 9) two-dimensional probability densities

Pq

P

P,
Fu(t)
F(z,1)

Parbt

transition probability to state |a@)>
probability of stimulated emission ‘
probability of the state vector |y in a mixture

slowly varying complex polarization for mode n-

slowly varying complex polarization in pulse
propagation

electric-dipole matrix element between levels a
and b (taken real)

electric-dipole matrix element between levels a
and b’

position coordinate

Fourier coefficient of population difference
D(z, v, t) and in quadrature coefficients
Stz v, t)

cavity quality factor

cavity quality factor for nth mode

Q'’s for x and y polarizations of electric field

radial coordinate in polar coordina’s system
position vector in polar coordinat .s
excitation rates to states |a> and |b)
complex ratios of atomic Fourier coefficients

@nfgn-1)
classical electron radius ~ 2.8 x 10-15m

XX1

(8.54)
(17.15)
(20.45)
(8.22)

. (9.72)

(1.4)

(15.13)
(L.7)
(8.2)
(8.9)

(15.2)
(16.66)
(16.119),
(16.86)
2.31)
(2.50)
(7.17)
(8.9)

(13.2)
(2.16)
(12.23)
(14.6)
(10.60)
(5.19)
(8.10)
(12.16)

(Fig. 1-4)

(Fig. 1-4)

(16.1)

(E.14)
(3.22)



Xxii LASER THEORY NOTATION

R rate constant (8.35)
R vector in pictorial representation of density
: matrix ' (7.70)
Ri1, Re, R3 components of R in abstract Cartesian space (7.66), (7.67),
(7.69)
Ry(r) - associated Laguerre polynomials - (1.26)
R; saturation parameter = 1/(ya~1 + y571) (8.38)
Ha, Ky single-mode rate coefficients in quantum theory
of reservoirs (16.25)
(16.22)

R(a*,f) coherent state representation of density operator (15.36)
Re{2”}  real part of complex quantity &

Sn constants in third-order complex polarization

integrals Ty, (D.6)
S similarity transformation (Zeeman theory) (12.14)
S(z, v, 1) in-quadrature component of polarization

(strong-signal theory) (10.56)
Sa(t) in-quadrature component of nth-mode

polarization (8.60)
& stabilization factor (laser theory) (8.57)
Lt', 1", ", s, to. tn  vVarious times
T temperature in degrees Kelvin (16.1)
Th level lifetime of atomic system ‘

[= 3™ + vo)] (13.26)
T dephasing time of atomic dipoles (= 1/y) (13.26)
Ts* inhomogeneous dephasing time of atomic dipoles (13.56)
Tiw third-order complex polarization integrals (D.7)
I (z) total energy crossing x-y plane at position z

(pulse propagation) : (13.35)
u average atomic speed in a gas (10.2)
uq(r), us(r) energy eigenfunctions for upper and lower levels (2.14)
un(x), ua(r), energy eigenfunctions for eigenvalue #iwn (1.10)
Un(z) nth-mode function of a cavity (has wave number

K») , (8.8)
% (w) energy distribution, e.g., for blackbody radiation (2.31)
v z component of velocity in gas laser (and for

Brownian motion) . (10.2)
V volume of a cavity (5.20)

V(r) atomic potential energy (2.7)
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w(»)
Wi(w)

W(T)

Swew
Ny BN

X

Yim(0p)

Z{v)

Yas Yo

LASER THEORY NOTATION

atom-field interaction energy. (usually electric
dipole)

dimensionless velocity distribution (usually
Maxwellian)

dimensionless frequency distribution for
inhomogeneously broadened line

Fourier transform of W(w)

x, y, and z Cartesian coordinates

unit vectors for x, y, and z Cartesian axes

slowly varying complex displacement
[x(r) = Re X(¢) exp(iwt)]

spherical harmonics

plasma dispersion function
set of index values whonse corresponding field
amplitudes vanish

complex dimensionless field amplitude of
coherent state |a) (eigenvalue of
annihilation operator {a|a}> = a|a)})

energy gain coeflicient in pulse propagation

as subscript, means a or b for energy levels of
two-level atom

net gain coeflicient in classical sustained
oscillator

gain parameter

coherent state ,

net gain coefficient for nth laser mode

as subscript, means a or b for energy levels of
two-level atom ,

self-saturation coefficient in classical sustained
oscillator

auxiliary coherent state

self-saturation coefficient Yor the nth laser mode’

atomic dipole decay constant {=1/T2 = Ya»

+ Ypn)
upper and lower-level decay constants

XXiii
2.1

(10.2)

(10.2)
(13.25)

(Fig. 1-4)
(Fig. 1-4)

(3.29)
(1.26)
(10.29)

(9.72)

(15.12)
(13.30)

(8.20)

@.1)
(13.18)
(15.12)
(8.50)

(14.90)
(4.1)

(15.35)
(8.50)

(7.48)
(2.46) (2.47)
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Yab

Yoh

o(x _ x')
5((1 - ao)
(r—-r)
Oy

ow
ot
4

Av
At

€
&n
&g -

£,6-

19319
n

6

onm

0(z)
9(z,t)

In 1p0

LASER THEORY NOTATION

L (Ya + 7b), spontaneous emission and in-
elastic collision contribution to decay of
atomic dipole

elastic collision contribution to dipole decay

. modulation depth

damping constant in Brownfan motion

one-dimensional Dirac delta function
two-dimensional Dirac delta function
three-dimensional Dirac delta function
Kronecker delta function = [(1) : i j
small frequency shift

small time interval

intermode beat frequency (= va-vn-1)
low-frequency beat note

time interval

permittivity of medium
small displacement from stationary intensity 7
permittivity of vacuum = (4nc2)~1 107 =
8.85 x 10-12 F/m
complex unit vectors for circular polarization
of electric field

arbitrary vectors in quantum-mechanical space

index of refraction

polar angle in polar coordinates

real, cross-saturation coefficients (by mode
Ey on Ey)

area under pulse envelop at position z

partial area under pulse envelop (up to time £)

complex, third-order general saturation
coefficient ‘

Multimode stability matrix .

loss coefficient in amplifier theory

wavelength of light

wavelength of mode n (=27/K,)

numbers of atoms per second-per volume
excited to upper and lower levels

{7.37)
(7.43)
(9.104)
(19.2)

(7.40)
(9.79)
(9.61)
(19.8) .

(13.3)
9.73)

(8.2)

(12.1)

(6.16)

(8.18)

(Fig. 1-4)
“.71).
(13.40)
after (13.53)

(9.18)
(9.41)

(13.3)

(8.25)
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Aa, .Ab

Vn
VM
Yo

n

p, p(t)
P

Pz, 1)
‘P(Z, v, t)

paa(z.’ t)
pﬂb(z’ t)

LASER THEORY NOTATION
excitation operators for upper and lower states

power-broadened frequency in Rabi flopping

as subscript, indexes field amplitude and phase:
E.(t), ¢u(®)

magnetic-dipole moment

Bohr magneton = 9.27 x 10-24 J/°K

eigenvalue in Rabi flopping

permeability of vacuum = 47 x 10-? H/m

laser (optical) oscillation frequency in
radians/sec not Hertz (circular frequency)

laser frequency for mode n

modulation frequency

average frequency = 4 (vy + v_)

frequency of + circular polarizations in Zeeman

laser or right- and left-traveling waves in ring
" laser

dimensionless coordinate for simple harmonic
oscillator = (mw/#)2x

3.1415926535897. . .

density matrix or operator

mode subscript in laser theory:
for example, Ey(r)

population matrix for laser medium

population matrix for ensemble moving w1th z
component of velocity, v

a = a, b, number of atoms in the a th level

population matrix element proportional to the
complex polarization

pla, zo, to, v,t) pure case <density matrix for atom

an(t )

excited to level a = a or b, at time t¢, with z

component of velocity v, located at z at time ¢

number representation of the density operator

p(1)

pa(t),ps(t) reduced density operators for th. system and

pe(t)

reservoir

correlation part of system-reservoir density
operator :

XXy
(20.7)

(2.61)
(9.18)
(1.37)
(1.37)

(2.58)
(8.2)

(8.10)

(8.8)

(9.84)
(Table 12-1)

(11.2), (12.1)

(1.22)

(1.5), (7.1

(9.18)
(8.23)

(10.6)
(8.23)

(8.29)

(10.4)
(7.19)

(16.87),
(16.88)

(16.91)
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Q Q

;
g
g
Oz, Gy, Gz

og'(t)
Oksk
On
()

’ 1 P
7,7,7'1

Tam
Te

Tp
Ts

Ol

¢
én(x)

$a(1)

In
xz, T, t)

y(r, ti
Jw()

¥nupo

v
¥, ¥e
Yo

op

spin-flip operator = 4 (0 — ioy)

as subscript, indexes field amplitudes and phases,
for example, Eq(t)

conductivity tensor in Maxwell’s equations

scalar conductivity in Maxwell’s equations

Pauli spin vector

components of Pauli spin vector

ga(t),06(t) projection operators for upper and lower states

projection operator for ith atom

density matrix in Josephson radiation theory

linear mode pulling for laser mode En(r)

slowly varying spin-flip operator in Langevin

theory

time intervals

mode cross pushing coefficients in laser theory
~ correlation time of random functions

pulse duration

hyperbolic secant time parameter

LASER THEORY NOTATION

(1.41)

(9.18)
(12.3)
(8.2)
(1.38)
(1.38)
(20.11)
(20.1) -
(21.24)
(8.52)

(20.12)

(10.47)
(9.22)

after (19.5)
(13.26)
(13.46)

complex frequency, for example, = ¥y + i(® — v) (10.36)

c_omplex frequency

azimuthal angle in polar coordinates

Hermite-Gaussian functions, eigenfunctions of
simple harmonic oscillator

slowly varying phase of the nth laser mode

complex susceptibility for nth mode
complex susceptibility in pulse propagation

Schrédinger wave function

state vector

third-order relative phase angle
relative phase angle
stationary-state values of y

a relative phase angle value

atomic line center frequency in laser media
= g — Wp
atomic line center frequency
eigenfrequency of an unperturbed Hamiltonian

(Table D-2)
(Fig. 1-9)

(1.22)
(8.8)

(8.13)
(13.21)

(1.1), (6.41)
(6.26)

(9.15)

(9.44)

(9.62), (9.63)
(9.60)

(2.19)
(13.56)
(1.9)



Wa, Wp

Wnm
Wald!

Qn

LASER THEORY NOTATION

eigenfrequencies of upper and lower levels
(a and b)
frequency difference = wn — @y
= Wa' — Wp/
frequency of single-mode radiation
frequency of nth mode (passive cavity or free
space)

Xxvii
(2.14)
(Fig. 12-2)
(14.6)
8.5)



