36 Lectures in Biology S. E. Luria

Copyright © 1975 by
The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without permission in writing from the publisher.

This book was typed by Kathy Lane. It was printed and bound by The Colonial Press Inc. in the United States of America.

Library of Congress Cataloging in Publication Data

Luria, Salvador Edward. 36 Lectures in Biology.

Bibliography: p.

1. Biology. I. Title. [DNLM: 1. Biology.

2. Genetics. QH308.2 L967t]

QH308.2.L87 574 74-19136

ISBN 0-262-12068-2

ISBN 0-262-62029-4 (pbk.)

The lectures in this book are the substance of a General Biology course taught at M.I.T. in the springs 1973 and 1974. Most of them are based on a transcript made in 1973. Five lectures that were presented by other teachers in 1973 are included as I presented them in 1974.

The justifications for publishing this set of lectures in book form are, first, that students seemed to enjoy them and profit by them; and second, that this course may offer a useful paradigm for biology courses of a kind suitable to good students who like to look under the surface of the subject matter.

The course is centered around one main theme, that of living organisms as possessors of a program—a set of genetic information—that under—lies all vital functions and that evolves by mutation, genetic recombination, and natural selection. This theme is followed through the discussion of the chemistry of living cells, their metabolism, and their synthetic activities, which are directed essentially to the reproduction of the program. Genetics is the natural center of the presentation. Developmental biology and physiology are approached as the expression of the program.

The question is bound to be raised that many areas of biology--zoology, botany, evolution theory, ecology--are not touched upon in these lectures. My opinion has always been that these disciplines, if they are to be learned well by the science-minded student, are best approached after a general biology course in which the student learns the essentials of the life phenomthe chemistry of the cell, the organization and function of the genetic systems, the genetic significance of life cycles, and the functioning of cells in differentiated organisms. No claim is made that the lectures collected in this book cover exhaustively even those areas of biology that are included. The lectures represent a selection of topics organized around the central theme of the biological program of organisms. Thus some of the physiological topics, for example, are described without special concern for the underlying cellular or organ structures.

The M.I.T. students are not required to take a chemistry course as a prerequisite to this biology

course, but most of them are well read in all areas of basic science. It has proved useful to provide the student with some summaries of basic facts of organic and physical chemistry needed to understand elementary biochemistry. These summaries are included in the book as background materials (pages 316B-402B). I have also included a set of suggested topics for discussion at the weekly recitations that accompany the lectures, as well as a few sample examination questions to illustrate the level of performance expected of good students in this course.

The students have used as texts two books: Watson's Molecular Biology of the Gene plus any one of several biology texts of their choice. I have listed at the end of this Preface a few books that would provide adequate supplementary readings for the eager student and have suggested desirable readings at appropriate points in the series of lectures.

In a long list of acknowledgments, the most important one goes to Carole Bertozzi, who in the fall of 1972, with financial support from the Division for Study and Research in Education of M.I.T., helped me collect materials for the course and in the spring of 1973, with the help of Eva Aufreiter, recorded and took notes of my lectures. Carole then prepared a typescript that served as a basis for my further work. The excellence of her work made my task easier and swifter. I have endeavored to preserve to some extent the flavor and casualness of the lecture room at the price of improving style and syntax. I have also tried to give the drawings in this book the quality of blackboard sketches.

I am indebted in various ways to those of my colleagues who have participated in teaching General Biology at M.I.T. in the last 10 years: Paul Gross, E. C. Holt III, Vernon Ingram, and Cyrus Levinthal. Even though there has not been a great deal of explicitly joint planning, I am grateful to John G. Nicholls and Stephen W. Kuffler for a critical reading of two lectures. I am also grateful to the numerous graduate students who assisted in the teaching of the course. Nancy Ahlquist prepared all the diagrams from blackboard or pencil sketches, besides being involved in many critically important ways in the preparation of this book as she has for 15 years been involved in

every aspect of my writings.

Finally, my gratitude goes to my students, to whom this book is dedicated. I can think of no greater pleasure for a teacher than to see a crowd of bright faces respond with understanding to his lectures. This more than anything else encouraged me to put these lectures into print.

REFERENCE BOOKS

- At the end of each lecture or group of lectures reference will be made to specific chapters in one or more of the following books as well as to specific parts of the Background Section of this book, pages
- J. D. Ebert and I. M. Sussex. Interacting Systems in Development, 2nd Ed. Holt Rinehart and Winston, New York, 1970. An elementary but informative presentation of development with emphasis on cellular and molecular aspects.
- B. D. Katz. Nerve, Muscle, and Synapse. McGraw-Hill, New York, 1966. A stimulating discussion of the central issues of neurobiology. Not easy but rewarding.
- A. L. Lehninger. <u>Biochemistry</u>. Worth, New York, 1970. Undoubtedly the best biochemistry textbook available today.
- I. M. Klotz. Energy Changes in Biochemical Reactions, 2nd Ed. Academic Press, New York, 1967. This delightful little book is not easy reading but is an excellent introduction to the fundamental concepts of chemical energetics.
- G. S. Stent. Molecular Genetics. Freeman, San Francisco, 1971. This book deals with molecular biology from a narrative point of view, explaining the experimental basis of the various landmarks.
- M. W. Strickberger. <u>Genetics</u>. Macmillan, New York, 1968. A very complete text of genetics that covers with equal competence formal genetics and population genetics.
- A. J. Vander, J. H. Sherman, and D. S. Luciano. Human Physiology-The Mechanisms of Body Function. McGraw-Hill, New York, 1970. An elementary physiology text, deficient in biochemical analysis but appealing to a modern biologist because of the emphasis on regulatory mechanisms.
- J. D. Watson. Molecular Biology of the Gene, 2nd Ed. Benjamin, New York, 1970. A book that deserves its fantastic success because of its superb intellectual clarity and its insights into the central issues of present day biology.

CONTENTS

Preface xv

Reference books xix

Part I CELL BIOLOGY AND CELL CHEMISTRY 1

Lecture 1 Biology 3

Organisms 3

Plan versus program 4

Evolution 4

Unity of biochemistry 5

Cell theory 6

Procaryotes and eucaryotes 7

Cell growth 9

Exponential growth 10

Lecture 2 Growth limitations 15

Cell composition 17

Membranes 17

Weak bonds 18

Hydrogen bond 19

Ions 19

Acids and bases 20

Covalent bonds 20

Chemical fractionation 21

Cell lipids 22

Phospholipids 22

Polysaccharides 23

Appendix: the chemostat 25

Lecture 3 Proteins and nucleic acids 27

Proteins 27

Amino acids 27

pH and pK_a 29

Electrophoresis 30

Chromatography 31

Peptide bond 31

Sequences 32

Protein structure 33

Active site 35

Lecture 4

Nucleic acids 39

Sugars 39

RNA and DNA 39

Nucleotides 40

Complementarity 41

Transforming principle 43

Messenger RNA 44

Transfer RNA 44

Ribosomes 45

Part II

BIOCHEMISTRY 47

Lecture 5

Metabolism 49

Enzymes 50

Enzyme kinetics 52

Inhibition 54

Coenzymes 55

Lecture 6

Chemical energetics 57

Chemical potential 57

ATP 58

High-energy bonds 59

Free energy 59

Activation 62

Pyrophosphate split 63

Lecture 7

Oxidation reactions 65

Glycolysis 66

Regeneration of NAD 69

Respiration 70

Isotope labeling 71

Lecture 8	Electron transport 75
	Oxidative phosphorylation 76
	Life before oxygen 77
	Krebs cycle 77
	Energy yield 80
	Krebs cycle and biosynthesis 81
	Replenishing reactions 81
	Regulatory enzymes 82
Lecture 9	Anaerobic respiration 83
	Photosynthesis 83
	Calvin cycle 84
	Light reactions 85
	Carbon cycle 88
	Nitrogen cycle 88
Lecture 10	Biosynthesis 91
	Synthesis of amino acids 91
	Feedback regulation 92
	Synthesis of macromolecules 94
	Templates 95
	DNA synthesis 95
	In vivo synthesis 95
	Radioisotopes 95
	Density label 96
	Semiconservative replication 97
	Circular DNA 98
	Circular DNA 98 In vitro synthesis 100
	In vitro synthesis 100
Lecture ll	In vitro synthesis 100 DNA polymerases 100
Lecture ll	<u>In vitro</u> synthesis 100 DNA polymerases 100 Synthesis from triphosphates 101

DNA repair 106

Part III

RNA synthesis 107
RNA polymerase 108
Viruses 109

RNA viruses 110

Lecture 12 Protein synthesis 113

Direction of synthesis 114

In vitro synthesis 116

Genetic code 118 Universality 119 Degeneracy 121

Lecture 13 Missense mutations 123

td mutations 123
Termination 124
Suppressors 124
Polysomes 128

Regulation 129

Lecture 14 Gene concept 133

Genes 133

GENETICS 131

Mendel's laws 134

Mendel's First Law 134

Dominance 135

Mendel's Second Law 135

Diploid versus haploid 137

Heterozygosis 137

Linkage 138

Lecture 15 Crossing-over 141

Recombination 142

Mitosis 142

Mitotic cycle 144

Meiosis 144

Lecture 16

Life cycles 149

Neurospora 150

Nutritional mutants 151

Mapping function 153

Linear maps 154

Genetics of E. coli 154

Isolation of mutants 154

Transformation by DNA 157

Lecture 17

Mating in E. coli 161

Mating groups 161

Genetic fine structure 164

Partial diploidy 166

Complementation 167

Enzyme induction and repression 168

Operon 171

Lecture 18

Phage cycle 173

Recombination in phage 175

T4 rII mutants 177

Deletions 178

Frameshift mutations 180

Lecture 19

Eucaryotic genetics 183

Chromosomes 183

Chromosomes and DNA 184

Human genetics 186

Heredity and disease 187

Galactosemia 187

Huntington's chorea 188

Hemophilia 189

Sex-linked traits 190

Sickle cell anemia 191

Fetal hemoglobin 192

Lecture 20

Chromosomal abnormalities 195

Down's syndrome 195

Abnormal sex chromosome numbers 197

Inactive X chromosome 197

Quantitative inheritance 198

Heritability 200

I. Q. 201

Genetic polymorphism 201

Lecture 21 Gene frequencies 203

Hardy-Weinberg equilibrium 203

Selection 204

Genetic drift 206

Gene evolution 207

Speciation 209

Part IV DEVELOPMENTAL BIOLOGY 213

Lecture 22 Development 215

Differentiation 215

Gene constancy 216

Differential gene action 217

Determination 218

Morphogenesis 219

Sporulation 220

Lecture 23 Gametogenesis 225

Plant embryogenesis 226

Meristems 229

Growth limits 230

Lecture 24 Animal development 233

Parthenogenesis 233

Role of the nucleus 234

Cytoplasmic differentiation 235

Insect development 237

Gynandromorphs 238

Germinal particles 240
Gene amplification 241

Lecture 25

Maternal effects 245

Cellular differentiation 245

Stem cells 246
Teratoma 248
The T locus 249

Puff activation 250

Lecture 26

Animal development 253

Cleavage 253

Gastrulation 254

Induction 256

Secondary induction 257

Lecture 27

Embryonal physiology 261

Morphogenesis 262

Morphogenetic interactions 263 Timing of differentiation 265

Lecture 28

Aggregation 267

Sponges 267

Hydra 268

Gradients and cellular programming 270

Specificity signals 272

Part V

PHYSIOLOGY 275

Lecture 29

Hormones 277

Plant hormones 278

Insect hormones 279

Human hormones 281

Thyroxine 281

Pituitary hormones 282

Neurosecretion 284

Steroid hormones 285

CONTENTS

Hormones and the reproductive cycle Testosterone 289 Lecture 30 Epinephrine 291 Muscle contraction 292 Structure of muscle fibers ATP and contraction 295 Glycogen regulation 296 Cellular fibers and cytoskeleton 297 Assembly 299 Lecture 31 Blood circulation 301 Hemoglobin and O2 transport 302 Blood composition 304 Heart function 304 Tight junctions 306 Salt-water balance 307 Renal function 308 Lecture 32 Immunity 311 Blood groups 311 The Rh system 313 Antibody structure Clonal theory 315 Tolerance 318 Lecture 33 Nervous system 321 Principles of neurobiology 322 Neurons 324 Reflex arc 326

Lecture 34

Ionic relations 333

Stretch receptors 326 Electrophysiology 328

Hodgkin-Huxley theory 334

Local and action potentials

xiii

CONTENTS

Voltage clamp 337

Lecture 35

Synapses 341

Neurotransmitters 341

Nerve regeneration 344

Nerve growth factor 347

Lecture 36

Sensory receptors 349
Mechanoreceptors 350
Visual receptors 350

Retina 351

Processing of visual signals 353

Visual deprivation 356

Background material Chemical background 361B

Amino acids 371B

Carbohydrates (sugars) 380B

Nucleic acids 383B

Statistical mechanics and chemical kinetics 387B

Enzyme kinetics 390B

Free energy changes in biochemical reactions 392B

Acids, aldehydes, and oxidation-reduction

reactions 400B

Review material 403

Examination questions 422

Index 435

CELL BIOLOGY AND CELL CHEMISTRY