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PREFACE

This book contains a unified treatmént of a class of problems
of signal detection theory. This is the detection of signals in addi-
tive noise which is not required to have Gaussian probability den-
sity functions in its statistical description. For the most part the
material developed here can be classified as belonging to the gen-
eral body of results of parametric theory. Thus the probability
density functions of the observations are assumed to be known, at
least to within a finite number of unknown parameters in a known
functional form. Of course the focus is on noise which is not
Gaussian; results for Gaussian noise in the problems treated here
become special cases. The contents also form a bridge between
the classical results of signal detection in Gaussian noise and those
of nonparametric and robust signal detection, which are not con-
sidered in this book.

Three canonical problems of signal detection in additive noise
are covered here. These allow between them formulation of a
range of specific detection problems arising in applications such as
radar and sonar, binary signaling, and pattern recognition and
classification. The simplest to state and perhaps the most widely
studied of all is the problem of detecting a completely known
‘deterministic signal in noise. Also considered here is the detection
of a random non-deterministic signal in noise. Both of these situa-
tions may arise for observation processes of the low-pass type and
also for processes of the band-pass type. Spanning the gap
between the known and the random signal detection problems is
that of detection of a deterministic signal with random parameters
in noise. The important special case of this treated here is the
detection of phase-incoherent narrowband signals in narrowband
noise.

There are some specific assumptions that we proceed under
throughout this book. One of these is that ultimately all the data
which our detectors operate on are discrete sequences of observa-
tion components, as opposed to being continuous-time waveforms.
This is a reasonable assumption in modern implementations of sig-
nal detection schemes. To be able to treat non-Gaussian noise
with any degree of success and obtain explicit, canonical, and use-
ful results, a more stringent assumption is needed. This is the
tndependence of the discrete-time additive noise components in the
observation processes. There do exist many situations under
which this assumption is at least a good approximation.

With the same objective of obtaining explicit canonical
results of practical appeal, this book concentrates on locally
optimum and asymptotically optimum detection schemes. These
criteria are appropriate in detection of weak signals (the low
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signal-to-noise-ratio case), for which the use of optimum detecto_rs
is particularly meaningful and necessary to extract the most in
detection performance.

Most of the development given here has not been given
detailed exposition in any other book covering signal detection
theory and applications, and many of the results have appeared
relatively recently in technical journals. In presenting this
material it is assumed only that the reader has had some exposure
to the elements of statistical inference and of signal detection in
Gaussian noise. Some of the basic statistics background needed to
appreciate the rest of the development is reviewed in Chapter 1.
This book should be suitable for use in a first graduate course on
signal detection, to supplement the classical material on signal
detection in Gaussian noise. Chapters 2-4 may be used to provide
a fairly complete introduction to the known signal detection prob-
lem. Chapters 5 and 6 are on the detection of narrowband known
and phase-incoherent signals, respectively, and Chapter 7 is on
random signal detection. A more advanced course on signal detec-
tion may also be based on this book, with supplementary material
on nonparametric and robust detection if desired. This book
should also be useful as a reference to those active in research, as
well as to those interested in the application of signal detection
theory to problems arising in practice.

The completion of this book has been made possible through
the understanding and help of many individuals. My family has
been most patient and supportive. My graduate students have
been very stimulating and helpful. Prashant Gandhi has been
invaluable in getting many of the figures ready. For the excellent
typing of the drafts and the final composition, I am grateful <o
Drucilla Spanner and to Diane Griffiths. Finally, 1 would like to
acknowledge the research support I have received from the Air
Force Office of Scientific Research and the Office of Naval
Research, which eventually got me interested in writing this book.

Saleem A. Kassam
University of Pennsylvania
Philadelphia, PA 19104
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Chapter 1
ELEMENTS OF STATISTICAL HYPOTHESIS TESTING

1.1 Introduction

The signal processing problem which is the object of our
study in this book is that of detecting the presence of a signal in
noisy observations. Signal detection is a function that has to be
implemented in a variety of applications, the more obvious ones
being in radar, sonar, and communications: By viewing signal
detection problems as problems of binary hypothesis testing in
statistical inference, we get a convenient mathematical framework
within which we can treat in a unified way the analysis and syn-
thesis of signal detectors for different specific situations. The
theory and results in mathematical statistics pertaining to binary
hypothesis-testing problems are therefore of central importance to
us in this book. In this first chapter we review some of these basic
statistics concepts. In addition, we will find in this chapter some
further’ results of statistical hypothesis testing with which the
reader may not be as familiar, but which will be of use to us in
later chapters. ‘

We begin in Séction 1.2 with a brief account of the basic con-
cepts apd definitions of hypothesis-testing theory, which leads to a
discussion of most powerful tests and the Neyman-Pearson lemma
in Section 1.3. In Section 1.4 this important result is generalized
to yield the structures of locally optimum tests, which we will
make use of throughout the rest of this book. Section 1.5 reviews
briefly the Bayesian approach to construction of tests for
hypotheses. e shall not be using the Bayesian framework very
much except in Chapters 2 and 5, where we shall develop locally
optimum Bayes’ detectors for detection of known signals in addi-
tive noise. :

In the last section of this chapter we will introduce a measure
which we will make use of quite extensively in comparing the per-
formances of different detectors for various signal detection prob-
lems in the following chapters. While we will give a more general
discussion of the asymptotic relative efficiency and the efficacy in
Section 1.6, these measures will be introduced and discussed in
detail for the specific problem of detection of a known signal in
additive noise in Section 2.4 of Chapter 2. Readers may find it
beneficial to postpone study of Section 1.6 until after Chapter 2
has been' read; they may then better appreciate the applicability of
the ideas and results of this section.



1.2 Basic Concepts of Hypothesis Testing

Let X = (X, X3, ..., X, ) be a random vector of observatipns
with jeint probability density function (pdf) f x(x | ), where ¢ is a
parameter of the density function. Any specific realization
x = (2, Zg, ..., 2, ) of X will be a point in B*, where B is the set
of all real numbers. In binary hypothesis-testing problems we
have to decide between one of two hypotheses, which we will label
" as H and K, about the pdf f x(x | §), given an observation vector
in R*. Let © be the set of all possible values of #; we usually
identify H with one subset 6 of ¢ values and K with a disjoint
subset By, so that 8 = 6, UBk. This may be expressed for-
mally as

H: X has pdf f x(x | 8) with 6 € B4 (1-1)
K: X has pdf f x(x | ) with 6 € O (1-2)

If 4 and Oy are made up of single elements, say 6; and 4y,
respectively, we say that the hypotheses are simple; otherwise, the
hypotheses are composite. If © can be viewed as a subset of R’
for a finite integer p, the pdf f x(x | 6) is completely specified by
the finite number p of real components of , and we say that our
hypotheses are parametric.

A test for the hypothesis H against K may be specified as a
partition of the sample space S = R* of observations into disjoint
subsets Sy and Sk, so that x falling in Sy leads to acceptance of
H, with K accepted otherwise. This may also be expressed by a
test function &x) which is defined to have value &x)=1 for
x € Sx and value §x) = 0 for x € Sy. The value of the test func-
tion is defined to be the probability with which the hypothesis K,
the alternative hypothesis, is accepted. The hypothesis H is called
the null hypothesis. '

More generally, the test function can be allowed to take on
probability values in the closed interval [0,1]. A test based on a
test function taking on values inside [0,1] is called a randomized
test.

The power function p (6] 6) of a test based on a test function
é is defined for € ©5 U By as

p(9]8) = E{¥X)| 6} |
= [ &x)f x(x|0) dx (1-3)
.l

Thus it is the probability with which the test will accept the alter-
native hypothesis K for any particular parameter value . When
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9 is in ©y the value of p(6|4) gives the probability of an error,
that of accepting K when H is correct. This is called a type |
error, and depends on the particular value of 8 in ©,. The size of
a test is the quantity

o= sip p(0 | ) (1-4)

which may be considered as being the best upper bound on the
type | error probability of the test.

In signal detection the null hypothesis is often a noise-only
hypothesis, and the alternative hypothesis expresses the presence
of a signal in the observations. For a detector D implementing a
test function 6(x) the power function evaluated for any 6 in ©
gives a probability of detection of the signal. Thus in later
chapters we will use the notation p,(# | D) for the power function
of a detector D, and in discussing the probability of detection at a
particular value of the parameter 4 in O (or for a simple alterna-
tive hypot.hesls K) we will use for nt the notation p;. The size of
a detector is often called its false-alarm probability. This usage is
encountered specifically when the noise-only null hypothesis is sim-
ple, and the notation for this probability is p,.

1.3 Most Powerful Tests and the
Neyman-Pearson Lemma

Given a problem of binary hypothesis testing such as defined
by (1-1) and (1-2), the question arises as to how one may define
and then construct an optimum test. Ideally, one would like to
have a test for which the power function p (4] 6) has values close
to zero for 6 in ©y, and has values close to unity for 4 in ©y.
These are, however, conflicting requirements. We can instead
impose the condition that the size o of any acceptable test be no
larger than some reasonable level ag, and subject to this condition
look for a test for which p (8] 6), evaluated at a particular value
Ok of 8 in O, has its largest possible value. Such a test is most
powerful at level ap in testing H against the simple alternative
0 = 8y in O ; its test function 5’ (x) satisfies

2P p(616°)< ao - (1-5)
and
POk 18)2p(0x |9) (1-6)

for all other test functions &(x) of size less than or equal to ap. In
most cases of .interest a most powerful level ay test satisfies (1-5)
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with equality, so that its size is o = ay.

For a simple null hypothesis H when 8 =6y is the only
parameter value in Oy, the condition (1-5) becomes
p(8y |6°) < agor p; < ag, subject to which p; at 8 = §y is max-
imized. For this problem of testing a simple H against a simple
K, a fundamental result of Neyman and Pearson (called the
Neyman-Pearson lemma) gives the structure of the most powerful
test. We state the result here as a theorem:

Theorem 1: Let &x) be a test function of the form

1, Sx(xe|ox) > tf x(x|oy)
T oHx)={ r(x), S x(x|0x) =t/ x{x | o) (1-7)
o I x(c | 0) < tf xix | 05)

for some constant ¢ > 0 and some function r (x) taking on values
in [0,1]. Then the resulting test’ is most powerful at level equal to
its size for H: 6 == 0, versus K: 0 = . '

In addition to the above sufficient condition for a most
powerful test it can be shown that conversely, if a test is known
to be most powerful at level equal to its size, then its test function
must be of the form (1-7) except perhaps on a set of x values of
probability measure zero. Additionally, we may always require
r(x) in (1-7) to be a constant r in [0,1]. Finally, we note that we
are always guaranteed the existence of such a test for H versus K ,
of given size a [Lehmann, 1959, Ch. 3].

From the above result we see that generally l;he structure of
a most powerful test may be described as one comparing a likeli-
hood ratio to a constant threshold, .

J x(x]0x) '

/ x(xT0y) (1-8)
in deciding if the alternative K is to be accepted. If the likelihood
ratio on the left-hand side of (1-8) equals the threshold value ¢,
the alternative X may be accepted with some probability r (the
randomization probability). The constants ¢ and r may be
evaluated to obtain a desired size a using knowledge of the distri-
bution function of the likelihood ratio under H.

When the alternative hypothesis K is composite we may look
for a test which is uniformly most powerful (UMP) in testing H
against K, that is, one which is most powerful for H against each
0==6x in ©x. While UMP tests can .be found in 20me CO80S,.
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notably in many situations involving Gaussian noise in signal
detection, such tests do not exist for many other problems of
interest. One option in such situations is to place further restric-
tions on the class of acceptable or admissible tests in defining a
most powerful test; for example, a requirement of unbiasedness or
of invariance may be imposed [Lehmann, 1959, Ch. 4-6]. As an
alternative, other performance criteria based on the power func-
tion may be employed. We will consider one such criterion, lead-
ing to locally optimum or locally most powerful tests for composite
alternatives, in the next section. One approach to obtaining rea-
sonable tests for composite hypotheses is to use maximum-
likelihood estimates 8y and 8y of the parameter 4, obtained under
the constraints 8 € ©5 and 6 € Oy, respectively, in place of 8y
and 8y in (1-8). The resulting test is called a generalized likel:-
hood ratio test or simply a likelihood ratio test (see, for example,
[Bickel and Doksum, 1977, Ch. 6}).

1.4 Local Optimality and the Generalized
Neyman-Pearson Lemma

Let 'us now consider the approach tq.construction of tests for
composite alternative hypotheses which we will use almost
exclusively in the rest of our development on signal detection in
non-Gaussian noise. In this approach attention is concentrated on
alternatives ¢-= fx in 8y which are close, in the sense of a metric
or distance, to the null-hypothesis parameter value 8= 4.
Specifically, let  be a real-valued parameter with value 6 = g,
defining the simple null hypothesis and let # > 6, define the com-
posite alternative hypothesis. Consider the class of all tests based
on test functions &x) of a particular desired size a for 4 = ¢,
against 4 > #, and assume that the power functions p(#]8) of
these tests are continuous and also continuously differentiable at
0 =0,. Then if we are interested primarily in performance for
alternatives which are close to the null hypothesis, we can use as a
measure of performance the slope of the power function at § = 4,
that is,

P (8| 8)=1p"(018)]1my,

=j5r000) (19)

From among our class of tests of size a, the test based on
6°(x) which uniquely maximizes p’ (6,{6) has a power function
satis{lying :

POIS") 2 p(0]8), 80 <6 <lbuu (1-10)
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for some Opax > 8. Such a test is called a locally most powerful or
locally optimum (LO) test for 6 = 6, against 8 > ;. It is clearly of
interest in situations such as the weak-signal case in signal detec-
tion, when the alternative-hypothesis parameter values of primary
concern are those which define pdl’s f x(x | #) close to the null-
hypothesis noise-only pdf f x{x | 84).

The following generalization of the Neyman-Pearson funda-
mental result of Theorem 1 can be used to obtain the structure of
an LO test:

Theorem 2: Let g(x) and h,(x), hyx), ..., h, (x) be real-valued
and integrable functions defined on B*. Let an integrable func-
tion &x) on R* have the characteristics ‘

4

Lo, 00> B ke

6x)={ r(x) v(X)=f)| t A (x) (1-11)

0 L 9B <X k)

\

for a set of constants > 0, i=1,2,..,m, and where 0 < r(x) < 1.
Define, for i =1,2,...,m, the quantities

o = [ 8x) h(x) dx (1-12)
.l

Then from within the class of all test functions satisfying the m
constraints (1-12), the function §(x) defined by {1-11) maximizes
f ¥x)g (x) dx.

.‘

A more complete version of the above theorem, and its proof,
may be found in [Lehmann, 1959, Ch. 3]; Ferguson [1967, Ch. 5]
also discusses the use of this result.

To use the above result in finding an LO test for 0 =46,
against § > §y defining ©4 and 6y in (1-1) and (1-2), respectively,
let us write (1-9) explicitly as

p' (ol 8= 5 [ 8f xix | 9) dx
.l

-1,

=[50 fx(x“)l ix (1:13)
J

LY
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assuming that our pdf’s are such as to allow the interchange of

the order in which lhmits and integration operations are per-

formed. Taking m =1 and identifying h,(x) with f x(x|4,) and

g (x) with. —dii I x(x]96) in Theorem 2, we are led to the
(N

(g
locally optimum test .which accepts the altrnative X: 8 > 4,

when

{;fx(xlo)l,_,o

S x(x | %)

>t (1-14)

where ¢t is the test threshold value which results in a size-a test
satisfying ‘

E{8(X)|H: 6 =08)=aqa ) (1-15)

The test of (1-14) may also be expressed as one accepting the
alternative when

| 7‘% In{f x(x | )} l‘_'o >t (1-16)

Theorem 2 may also be used to obtain tests maximizing the
second derivative p'' (65| 8) at § = g;,. This would be appropriate
to attempt if it so happens that p' (6, | 6) = 0°for all size-a tests
for a given problem. The condition p’ (,|6) =0 will oceur if

7‘% [ x(x]86) is zero, assuming the requisite regrlarity condi-
LR
tions mentioned above. In this case Theorem 2 can be applied to

obtain the locally optimum test accepting the alternative
hypothesis K: 8 > 6, when

2
S 1xx10)
7 x{x | 8)

U N

>t | (1-17)

One type of problem for which Theorem 2 is useful in charac-
terizing locally optimum tests is that of testing # = 6, against the
two-sided alternative hypothesis ¢ £ 4,. We have previously men-
tioned that one can impose the condition of unbiasedness on the
allowable tests for a problem. Unbiasedness of a size-o test for the
hypotheses H and X of (1-1) and (1-2) means that the test
satisfies ‘



p(0]6) < a, alld€By (1-18)
p(0]8) > o, alld €O (1-19)

so that the detection probability for any 8y € ©x is never less
than the size a. For the two-sided alternative hypothesis 6 5 6,
suppose the pdf’s f x(x |6) are sufficiently regular so that the
power functions of all tests are twice continuously differentiable at
9 = 6,. Then it follows that for any unbiased size-a test we will
have p(6y|6) = a and p’ (6| 6) = 0. Thus, the test function of a
locally optimum unbiased test can be characterized by using these
two constraints and maximizing p'' (6p ] 8) in Theorem 2. Another
interpretation of the above approach for the two-sided alternative
hypothesis is that the quantity w = ( - 6,)* may then be used as a
measure of the distance of any alternative hypothesis from the
null hypoth-sis § = 6, We have

d 1 d
PO =gy 3 rCl9)

0.

=5 2" (519) (1-20)

if p' (6| 8) is zero, for sufficiently regular pdf’s f y(x | 6). Thus if
p' (8] 8) is zero for a class of size-a tests, then maximization of
p" (6] 6) leads to a test which is locally optimum within that
class.

1.5 Bayes Tests

In general statistical decision theory which can treat estima-
tion and hypothesis-testing problems within a single framework,
there are four fundamental entities. These are (a) the obseryation
space, which in our case is R*; (b) the set 8 of values of § which
. parameterizes the possible distributions of the observations; (c) the
set of all actions ¢ which may be taken, the action space A ; and
(d) the loss function {(8,a), a real-valued function measuring the
loss suffered due to an action ¢ when #€ © is the parameter
value. In a binary hypothesis-testing problem the action space A
will have only two possible actions, ey and ag, which, respec-
tively, represent acceptance of the hypotheses H and K; and as a
reasonable choice of loss function we can take

1(0a)==1cyy, 0€6,;,anda = q (1-21)
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where J,L = H or K, the ¢,;, are non-negative, and ¢;; = 0.
What is sought is a decision rule d(x) taking on values in A,
which specifies the action to be taken when an observation x has
been made. More generally we can permit randomized decisions
é(x) which for each x specify a probability distribution over A.

The performance of any decision rule d(x) can be character-
ized by the average loss that is incurred in using it; this is the risk
SJunction )

R(64)=E{(64(x)] )
= [ 1(8.d(x))f x(x | 6) dx (1-22)
r* .

The risk function for any given decision rule is nonetheless a func-
tion of 4, so that a comparison of the performances of different
decision rules over a set of values of 8 is not quite straightforward.
A single real number serving as a figure of merit is assigned to a
decision rule in Bayesian decision theory; to do this there is
assumed to be available information leading to an @ priors charac-
terization of a probability distribution over 8. We will denote the
corresponding pdf as #(#), and obtain the Bayes risk for a given
prior density »{8) and a decision rule d(x) as

r(md)=E{R(6,d)} -
= [R(6,d)n(8) d8 (1-23)
e .

In the binary hypothesis-testing problem of deciding between
Oy and 6y for 6 in f x(x | §) [Equations (1-1) and (1-2)], the prior
pdf =(6) may be obtained as

w6) =y n(f | H) + g n(d| K) (1-24)
where my and my are the respective a priori probabilities that H
and K are true (ry + mx =1), and =0 | H) and =8 | K) are the

conditional a priori pdf’s over ©, conditioned, respectively, on H
and K being true. For the loss function of (1-21) this gives

rnd) = [ [ 16,400 x(x | 0)n0) dx do
.I
= J fl(o,a(x))fx(xlo){ )y m(ou)}u dx
PR J=H K )

(1-25)



