Stochastic models,
estimation,

and control
VOLUME 1

PETER S. MAYBECK




Stochastic models,
estimation,

“and control
VOLUME 1

PETER S. MAYBECK

DEPARTMENT OF ELECTRICAL ENGINEERING
AIR FORCE INSTITUTE OF TECHNOLOGY
WRIGHT-PATTERSON AIR FORCE BASE

OHIO

ACADEMIC PRESS New York San Francisco London 1979
A Subsidiary of Harcourt Brace Jovanovich, Publishers

K' :_ /‘1 3 _»v\ ; ALY
SO LS ‘:) o] i Sy



CoryricHT © 1979, BY AcapEMIC PrEss, INc.

ALL RIGHTS RESERVED.

NOC PART OF THIS PUBLICATION MAY BE REPRODUCED OR
TRANSMITTED IN-ANY FORM OR BY ANY MEANS, ELECTRONIC
OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY
INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT
PERMISSION IN WRITING FROM THE PUBLISHER.

ACADEMIC PRESS, INC.
111 Fifth Avenue, New York, New York 10003

United Kjngdom Edition published by

ACADEMIC PRESS, INC. (LONDON) LTD.
24/28 Oval Road, London NWl

Library of Congress Cataloging in Publication Data

Maybeck, Peter S
Stochastic models, estiration and control.

(Mathematics in science and engineering ;v. )

Includes bibliographics.

1. System analysis. 2. Control theory. 3. Estimation
theory. [. Title. [I. Series.
QA402.M37 519.2 78-8836
ISBN 012480701 -1 (v. 1)

PRINTED IN THE UNITED STATES OF AMERICA

K2 98765432



Preface

The purpose of this book is twofold. First, it attempts to develop a
thorough understanding of the fundamental concepts incorporated in
stochastic processes, estimation, and control. Furthermore, it provides
some experience and insights into applving the theory to realistic practical
problems.

The approach taken is oriented toward an engineer or an engincering
student. We shall be interested not only in mathematical results, but alsoin a
physical interpretation of what the mathematics means. In this regard.
considerable effort will be expended to generate graphical representations
and to exploit geometric insights where possible. Moreover. our attention
will be concentrated upon eventual implementation of estimation and control
algorithms, rather than solely upon rigorous derivation of mathematical
results in their most general form. For example. all assumptions will be
described thoroughly in order to yield precise results, but these assumptions
will further be justified and their practical implications pointed out explicitly.
Topics where additional generality or rigor can be incorporated will also be
delineated, so that such advanced disciplines as functional analysis can be
exploited by, but are not required of, the reader.

Because this book is written for engineers, we shall avoid measure theory,
functional analysis, and other disciplines that may not be in an engineer’s
background. Although these fields can make the theoretical developments
more rigorous and complete, they are not essential to the practicing engineer
who wants to use optimal estimation theory results. Furthermore, the book
can serve as a text for a first-year graduate course in estimation and stochas-
tic control, and these advanced disciplines are not generally studied prior to
such a course. However. the places where these disciplines do contribute
will be pointed out for those interested in pursuing more rigorous develop-
ments. The developments in the text will also be motivated in part by the
concepts of analysis and functional analysis, but without requiring the reader
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Xii PREFACE

to be previously familiar with these fields. In this way, the reader will
become aware of the kinds of questions that have to be answered in a
completely rigorous derivation and will be introduced to the concepts re-
quired to resolve them properly.

This work is intended to be a text from which a reader can learn about
estimation and stochastic control, and this intent has dictated a format of
presentation. Rather. than strive for the mathematical precision of a
theorem-proof structure, fundamentals are first motivated conceptually and
physically, and then the mathematics developed to serve the purpose. Prac-
tical aspects and .eventual implementation of algorithms are kept at the
forefront of concern. Finally, the progression of topics is selected to
maximize ‘earning:‘a firm foundation in linear system applications is laid
before nonlinear applications are considered, conditional probability density
functions are discussed before conditional expectations, and so forth. Al-
though a reference book might be organized from the most general concepts
progressively to simpler and simpler special cases, it has been our experi-
ence that people grasp basic ideas and understand complexities of the
general case better if they build up from the simpler problems. As generaliza-
tions are made in the text. care is taken to point out all ramifications—what
changes are made in the previous simpler case, what concepts generalize and
how, what concepts no longer apply, and so forth.

With an eye to practicality and eventual implementations, we shall em-
phasize the case of continuous-time dynamic systems with discrete-time
data sampling. Most applications will in fact concern continuous-time sys-
tems, while the actual estimator or controller implementations will be in the
form of software algorithms for a digital computer, which inherently in-
volves data samples. These algorithms will be developed in detail, with
special emphasis on the various design tradeoffs involved in achieving an
efficient, practical ronfiguration.

The corresponding resuits for the case of continuously available mea-
surements will be presented, and its range of applicability discussed. How-
ever, only a formal derivation of the results will be provided; a rigorous
derivation, though mathematically enriching, does not seem warranted be-
cause of this limited applicability. Rather, we shall try to develop physical
insights and an engineering appreciation for these resuits.

Throughout the development, we shall regard the digital computer not
only as the means for eventual implementation of on-line algorithms, but also
as a design rool for generating the final ‘‘tuned’” algorithms themselves. We
shall develop means of synthesizing estimators or controllers, fully evaluat-
ing their performance capabilities in a real-world environment, and iterating
upon the design until performance is as desired, all facilitated by software
tools.

Because the orientation is toward engineering applications, examples will
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be exploited whenever possible. Unfortunately, even under our early restric-
tions of a linear system model driven by white Gaussian noises (these
assumptions will be explained later), simple estimation or control examples
are difficult to generate—either they are simple enough to work manually
and are of little value, or are useful, enlightening, and virtuatly impossible to
do by hand. At first, we shall try to gaininsights into algorithm structure and
behavior by solving relatively simple problems. Later, more complex and
realistic problems will be ¢onsidered ‘in order to appreciate the practical
aspects of estimator or controller implementation.

This book is the outgrowth of the first course of a two-quarter sequence
taught at the Air Force Institute of Technology. Students had previously
taken a course in applied probability theory, taught from the excellent
Chapters 1-7 of Davenport’s ** Probability and Random Processes.”” Many
had also been exposed to a first control theory course, linear algebra. linear
system theory, deterministic optimal control, and random processes. How-
ever, considerable attention is paid to those fundamentals in Chapters 2-4,
before estimation and stochastic control are developed at all. This has been
done out of the conviction that system modeling is a critical aspect, and
typically the.*“weak link, in applying theory to practice.

Thus the book has been designed to be self-contained. The reader is
assumed to have been exposed to advanced calculus, differential equations.
and some vector and matrix analysis on an engineering level. Any more
advanced mathematical concepts will be developed within the text, requiring
only a willingness on the part of the reader to-deal with' new ‘means of
conceiving a problem and its solution. Although the mathematics becomes
relatively sophisticated at times, efforts are made to motivate the need for.
and stress the underlying basis of, this sophistication. The objective is to
investigate the theory and derive from it the tools required to reach the
ultimate objective of generating practical designs for estimators and stochas-
tic controllers.

The author wishes to express his gratitude to the students who have
contributed significantly to the writing of this book through their helpful
suggestions and encouragement. The stimulation of technical discussions
and association with Professors John Deyst, Wallace Vander Velde. and
William Widnall of the Massachusetts Institute of Technology and Profes-
sors Jurgen Gobien, James Negro. and J. B. Peterson of the Air Force
Institute of Technology has also had a profound effect on this work. Ap-
preciation is expressed to Dr. Robert Fontana, Head of the Department of
Electrical Engineering, Air Force Institute of Technology, for his support
throughout this endeavor, and to those who carefully and thoroughly re-
viewed the manuscript. [ am also deeply grateful to my wife, Beverly. whose
understanding and constant supportiveness made the fruition of this effort
possible.



- Notation

Vectors. Matrices

Scalars are denoted by upper or lower case letters in italic type.
Vectors are denoted by lower case letters in boldface type, as the vector x
made up of components x;.
~Matrices are denoted by upper case letters in boldface type, as the matrix A
made up of elements 4;; (ith row, jth column).

Random Vectors (Stochastic Processes), Realizations (Samples).
and Dummy Variables

Ruandom vectors are set in boldface sans serif type, as x made up of scalar
components X;. :

Realizations of the random vector are set in boldface roman type, as x:
x(0i) = X.

Dummy variables (for arguments of density or distribution functions, integra-
tions, etc.) are denoted by the equivalent Greek letter, such as & being associated
with x: e.g.. f,(£)- The correspondences are (x, &), (y, p), (z,{), (Z. ).

Subscripts
a: augmented ¢: continuous-time
d: discrete-time t: true, truth model
Superscripts
T. transpose (matrix) ~. Fourier transform
~1: inverse (matrix) ©.  estimate

*: complement (set) or complex conjugate

Matrix and Vector Relationships

A > 0: A s positive definite.
A > 0. A is positive semidefinite.
X <a: componentwise, x; < dy, X; < dy,...,and x, < a,.

Xvii



xviii NOTATION

List of symbols and payes where they are defined or first used

A 60 Q 148: 154: 155
B 35.36: 169 Q, 171

B, 171 R 115: 174
C 246: 328 R, 176: 257
D 36;332; 392 R" 17:37.62
E{- 88 r 218: 228
E{| 935 r 35:91

e 117:226: 328 e 91
exp|-; 102 S 370

F 26.36: 163 s 228

F, 68 s 161

Fuy 78 T 28

f 37 1 133

S 72 ; 42

Fy 78 U 392

F 61 u’ 35:169
Fy 62 \' 370

G 36:163 v 115:174
G, 172 v, 257

H 35,36: 42 W 44

h 26;37; 42 W, 45

1 16; 156, 161 Won 45

54 240 W - 45

J 121 W, 370

K 117;217 w 153155
M 47 w, 171

M, 47 X 333
Mo, 48 x 65, 66; 133: 163
My 47 K(t;7) 115;209
m 89: 136 R(r,* 115; 207
m 35 R(7°) 309; 333
n 26 R(t/t,_ ) 219

P,, 90 Z 206

P, 97 z 115,174
P,.(1) 136 z, 257
P.(t+7 136 z, 206
P..(7) 140 ] 148; 155
PG,) ©115: 209 o 90
P(t;") 115;207 o’ 50
P(t/t;_ ) 219 T 40: 140
P(A) 60: 63 Lt 40
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CHAPTER 1
Introduction

1.1 WHY STOCHASTIC MODELS, ESTIMATION,
AND CONTROL?

When considering system analysis or controller design, the engineer has at
his disposal a wealth of knowledge derived from deterministic system and
control theories. One would then naturally ask, why do we have to go beyond
these results-and propose stochastic system models, with ensuing concepts of
estimation and control based upon these stochastic models? To answer this
question, let us examine what the deterministic theories provide and determine
where the shortcomings might be.

Given a physical system, whether it be an aircraft, a chemical process, or
the national economy, an engineer first attempts to develop a mathematical
model that adequately represents some aspects of the behavior of that system.
Through physical insights, fundamental “laws,” and empirical testing, he tries
to establish the interrelationships among certain variables of interest, inputs
to the system, and outputs from the system.

With such a mathematical model and the tools provided by system and
control theories, he is able to investigate the system structure and modes of
response. If desired, he can design compensators that alter these characteristics
and controllers that provide appropriate inputs to. generate -desired system
responses, :

In pgder to observe the actual system behavior, measurement devices are
construeted to output data signals proportional to certain variables of interest.
These output signals and the known inputs to the system are the only informa-
tion that is directly discernible about the system behavior. Moreover, if a

“feedback controlier is being designed, the measurement device outputs are the
only signals directly available for inputs to the controller.

There are three basic reasons why deterministic system and control theories
do not provide a totally sufficient means of performing this analysis and

1



2 1. INTRODUCTION

design. First of all, no mathematical system model is perfect. Any such model
depicts only those characteristics of direct interest to the engineer’s purpose.
For instance, although an endless number of bending modes would be re-
quired to depict vehicle bending precisely, only a finite number of modes would
be included in a useful model. The objective of the model is to represent the
dominant or critical modes of system response, so many effects are knowingly
left unmodeled. In fact, models used for generating online data processors or
controllers must be pared to only the basic essentials in order to generate a
computationally feasible algorithm.

Even effects which are modeled are necessarily approximated by a mathe-
matical model. The “laws” of Newtonian physics are adequate approximations
to what is actually observed, partially due to our being unaccustomed to
speeds near that of light. It is often the case that such “laws” provide adequate
system structures, but various parameters within that structure are not deter-
mined absolutely. Thus, there are many sources of uncertainity in any mathe-
matical model of a system.

A second shortcoming of deterministic models is that dynamxc systems are
driven not only by our own control inputs, but also by disturbances which we
can neither control nor model deterministically. If a pilot tries to command a
certain angular orientation of his aircraft, the actual response will differ from
his expectation due to wind buffeting, imprecision of control surface actuator
responses, and even his inability to generate exactly the desired response from
his own arms and hands on the control stick.

A final shortcoming is that sensors do not-provide perfect and complete data
about a system. First, they generally do not provide all the information we
would like to know: either a device cannot be devised to generate a measure-
ment of a desired variable or the cost (volume, weight, monetary, etc.) of
including such a measurement is prohibitive. In other situations, a number of
different devices yield functionally related signals, and one must then ask how
to generate a best estimate of the variables of interest based on partially
redundant data. Sensors do not provide exact readings of desired quantities,
but introduce their own system dynamics and distortions as well. Furthermore,
these devices are also always noise corrupted. :

As can be seen from the preceding discussion, to assume perfect knowledge
of all quantities necessary to describe a system completely and/or to assume
perfect control over the system is a naive, and often inadequate, approach.
This motivates us to ask the following four questions:

(1) ‘How do you develop system models that account for these uncertain-
ties in a direct and proper, yet practical, fashion? ’

(2) Equipped with such models and incomplete, noise- corrupted data from
available sensors, how do you optimally estimate the quantities of interest to
you?
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~(3). . In the face of uncertain system descriptions,. incomplete and noise-
corrupted data, and disturbances beyond your control, how do.you optimally
conirol a.system to perform in a desirable manner?
(4) How do you evaluate the performance capabilities of such estlmatron
and control systems, both before and after they are actually built?

This book has been o.rganiz‘edr specifically to answer these questions in a -
meaningful and useful manner. ’

1.2 OVERVIEW OF THE TEXT

Chapters 2-4 are devoted to the stochastic modeling problem. First Chap-
ter 2 reviews the pertinent aspects of deterministic system models, to be ex-
ploited and generalized subsequently. Probability theory provides the basis of
all of our stochastic models, and Chapter 3 develops both the general concepts
/and the natural result of static system models. In order to incorporate dy-
namics into the model, Chapter 4 investigates stochastic processes, concluding
with practical linear dynamlc system models. The basic form is a linear system
driven by white Gaussian noise, from which are available linear measurements
which are similarly corrupted by white Gaussian noise. This structure is justi-
fied extensively, and means of describing a large class of problems in this
context are delineated.

Linear estimation is the subject of the remaining chapters. Optimal filtering
for cases in which a linear system model adequately describes the problem
dynamics is studied in Chapter 5. With this background, Chapter 6 describes
the design and performance analysis of practical online Kalman filters. Square
root filters have emerged as a means of solving some numerical precision diffi-
culties encountered when optimal filters are implemented on restricted word-
length online computers, and these are detailed in Chapter 7.

Volume ! is a complete text in and of itself. Nevertheless, Volume 2 will
extend the concepts of linear estimation to smoothing, compensation of model
inadequacies, system identification, and adaptive filtering. Nonlinear stochastic
system models and estimators based upon them will then be fully developed.
Finally, the theory and practical design of stochastic controllers will be
“described.

1.3 THE KALMAN FILTER:
AN INTRODUCTION TO CONCEPTS

Before we delve into the details of the text, it would be useful to see where
we are going on a conceptual basis. Therefore, the rest of this chapter will
provide an overview of the optimal linear estimator, the Kalman filter. This
will be conducted at a very elementary level but will provide insights into the
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underlying concepts. As we progress through this overview, contemplate the
ideas being presented: try to conceive of graphic images to portray the con-
cepts involved (such as time propagation of density functions), and to generate
a logical structure for the component pieces that are brought together to solve
the estimation problem. If this basic conceptual framework makes sense to
you, then you will better understand the need for the details to be devetoped
later in the text. Should the idea of where we are going ever become blurred
by the development of detail, refer back to this overview to regain sight of the
overall objectives.

First one must ask, what is a Kalman filter? A Kalman filter is simply an
optimal recursive data processing algorithm. There are many ways of defining
optimal, dependent upon the criteria chosen to evaluate performance. It will be
shown that, under the assumptions to be made in the next section, the Kalman
filter is optimal with respect to virtually any criterion that makes sense. One
aspect of this optimality is that the Kalman filter incorporates all information
that can be provided to it. Tt processes all available measurements, regardless
of their precision, to estimate the current value of the variables of interest,
with use of (1) knowledge of the system and measurement device dynamics,
(2) the statistical description of the system noises, measurement errors, and
uncertainty in the dynamics models, and (3) any available information about
initial conditions of the variables of interest. For example, to determine the
velocity of an aircraft, one could use a Doppler radar, or the velocity indica-
tions of an inertial navigation system, or the pitot and static pressure and
relative wind information in the air data system. Rather than ignore any of
these outputs, a Kalman filter could be built to combine all of this data and
knowledge of the various systems’ dynamics to generate an overall best esti-
mate of velocity.

The word recursive in the previous description means that, unlike certain
data processing concepts, the Kalman filter does not require all previous data
to be kept in storage and reprocessed every time a new measurement is taken.
This will be of vital importance to the practicality of filter implementation.

The “filter” is actually a data processing algorithm. Despite the typical con-
notation of a filter as a “black box” containing electrical networks, the fact is
that in most practical applications, the “filter” is just a computer program in
a central processor. As such, it inherently incorporates discrete-time measure-
ment samples rather than continuous time inputs.

Figure 1.1 depicts a typical situation in which a Kalman filter could be used
advantageously. A system of some sort is driven by some known controls, and
measuring devices provide the value of certain pertinent quantities. Knowledge
of these system inputs and outputs is all that is explicitly available from the
physical system for estimation purposes.

The need for a filter now becomes apparent. Often the variables of interest,
some finite number of quantities to describe the “state” of the system, cannot



