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Preface

The current decade has witnessed an exponential growth of literature on stochas-
tic processes. The preoccupation with model-building has resulted in a large
number of theoretical models which seem to lack immediate appeal from a
statistical point of view. As a result there appears to be an ever-widening gap
between theory and applications in the area of stochastic modelling. The aim
of this monograph is to attempt to reduce this gap by directing the interest
of future researchers to the inference aspects of stochastic processes. Our choice
of topics and approaches used has been partly constrained by the current
trends in the literature and partly by our own interest in the area. We have
attempted to put on record the work depicting the current state of the art in
the general area of inference for stochastic processes as it appears to us.

Many of the results presented here will be appearing in book form for the
first time. This is a research monograph written for specialists in the common
area of stochastic processes and theoretical statistics; hopefully, it will appeal
to both of these broad groups. Advanced graduate and M.Sc. level students
should find the book useful; a seminar-type course based on a selected list of
topics from the monograph seems feasible for students working towards their
Ph.D.s in the North American system.

The topics in the book have been divided into three parts. Part I discusses
some standard (special) models in six chapters, in addition to the introductory
Chapter 0. In this part, the main ideas and methods are emphasized, avoiding



pitl Preface

technucalities as far as possible (within the constraint of maintaining a reason-
able level of accuracy). In places, heuristic derivations and sketches of proofs
rather than rigorous proofs are given in order not to interrupt the flow of the
main arguments. The readers of Part I are expected to be familiar with classical
stochastic processes at the level of Cox and Miller (1965) or Karlin and Taylor
(1975) and with Mathematical Statistics at the level of Cramer (1946). Some
familiarity with weak convergence (Billingsley, 1968), and martingale limit
. results (summarized in Appendix 1) will be an advantage.

Part I consists of three chapters on the theory of inference for general pro-
cesses in discrete and continuous time including diffusion processes. Part III
surveys in three chapters recent results on Bayesian, non-parametric and se-
quential procedures. The treatment of the subject in Parts II and III is more
rigorous than that in Part I, and the theory is emphasized here rather than the
methods. Familiarity with the theory of stochastic processes roughly at the level
of Gikhman and Skorokhod (1969) and with probability theory at the level
of Breiman (1968) is desirable for a smooth reading of most of the topics in
Parts Il and III.

All the chapters (except Chapters 0 and 1) contain, at the end, “Comple-
ments” which are intended to lead the interested reader to various special
problems, extensions, etc. for which space could.not be found in the text.
Appropriate references to most of these excursions are given where solutions
could be found. Bibliographical notes at the end of each chapter provide directly
related references rather than attempting to trace the origin of individual results.
Special topics and results relevant to some of the material in the text are briefly
discussed in four appendices at the end of the book.

Any individual chapter can be read independently of the other chapters;
the notation, and contents of each chapterare essentially selfcontained. Some
frequently used notation and abbreviations are listed on page xiii.

It is a pleasure to extend our thanks to the Departments of Statistics at
La Trobe and Sheffield Universities, Department of Operations Research at
Cornell University, and the Indian Statistical Institute, New Delhi Centre, for
the support received during the various stages of the preparation of the manu-
script. We would like to record our appreciation of Ms Kirsty Healey of the
Academic Press London for her efficient work in getting the manuscript ready
for the printers.

We are greatly indebted to all the authors whose work is discussed in this
monograph and we extend cur special thanks to those who kindly supplied us
with the preprints and reprints of their work.

February 1979. Ishwar V. Basawa
B. L. S. Prakasa Rao
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(*In a majority of cases treated in the book an MLE and a consistent LEE are
identical. For this reason the two terms will frequently be used synonymously in
the text.)
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Chapter 0

Introductory Examples of
Stochastic Models

Stochastic models are being increasingly used in scientific research in an
ever-widening spectrum of disciplines. In this introductory chapter we
describe some of their applications. The examples given below are by no
means exhaustive nor are they intended to be a representative selection of
possible fields of application or the processes to be discussed in this
monograph. Their purpose is merely to highlight the diversity of
applications.

EXAMPLE 1. A RANDOM WALK MODEL FOR
NEURON FIRING

The neuron fires when the membrane potential reaches a critical threshold
value, say C. Excitatory and inhibitory impulses are the inputs for the
neuron; these impulses arrive according to a Poisson process. Each excita-
tory impulse increases, and each inhibitory impulse decreases, the mem-
brane potential by a random quantity x with a common probability density
p(x). After each firing the membrane potential is reset at zero and the
process is repeated. A typical realization of the model is given in Fig. 1.
Let {Y,, Y,, ...} denote the times at which the neuron fires. The process of

1



2 0. INTRODUCTORY EXAMPl;ES OF STOCHASTIC MODELS

c
: 1—J-L‘_ -
o " Y

Fig. 1. Realization of a random walk model tor neuron firing.

inter-spike intervals {Y,, ¥, -Y;, ;- Y,, ...} is of interest to the neurologist.
Various questions such as the moments, correlation structure, and joint
distributions of these intervals are relevant. This model is an. example of a
point process. Statistical questions related to some simple point processes
are discussed in Chapter 6.

EXAMPLE 2. CHAIN BINOMIAL MODELS
IN EPIDEMIOLOGY

Suppose at time t=0 there are S(0) susceptibles and I(0) infectives. After a
certain latent period of the infection, considered here as a unit of time, some
of the susceptibles are infected; thus, at time t=1, the initial S(0) suscep-
tibles split into two groups: those who are infected, I(1) in number say, and
the remaining susceptibles say, S(1) in number. The process continues until

(s(0) 1(0))

(s(n (1

(s(2) r(2)

Fig. 2. Chain binomial model.



Example 3. A Population Growth Model 3

there are no more infectives in the population. The scheme is indicated in
Fig. 2. Note that, in" general, S(t)=S(t + 1)+ I(t + 1), (t=0, 1, 2, ...). Assum-
ing that the propability of a susceptible being infected is p we have, for the
Greenwood Model,

s(t)

P(S(t+1)=s(t + 1)|S(t) = s(t)) =<

. 1) —~s(t+ S+
s(t)—s(t+l))p_m (1 — ppe+ D,

The process {S(t), =0, 1, 2, ...} is a Markov chain with the transition
probabilities given above. Given S(0), these transition probabilities specify
the process {8(t)} completely. '

In the Greenwood Model, the number of infectives at time ¢ is assumed
not to influence the probability of infection during (¢, t+1). However, we
can remove this restriction by viewing {(S(¢), I(t))} as a bivariate Markov
chain with transition probabilities

P+ D=it+1), St+ 1)=s(t)— it + DIK)= i), S@)=5(1))

s(t) i O s() -
= 1— m)s(Hrl)rl_ 1 — i(OYs(t)—s(t+1)
(S(t+1))( p) U=(1-p}
This now becomes the Reed-Frost Model. Markov chains provide “a-
powerful tool in model building. The present example is a typical appli-
cation of Markov chains in epidemiology. Problems of inference for discrete
time Markov chains are discussed in Chapter 4.

EXAMPLE 3. A POPULATION GROWTH MODEL

Suppose an organism produces a random number, say Y, of offspring with
pe=P(Y=k), (k=0, 1, 2, ..), ¥ p,=1. Each offspring in turn produces
organisms independently according to the same distribution {pe)- 10
Z(t) denotes the population size at 'the ith generation, (t=0, 1, 2, ...) it
is seen that {Z(t)} is a Markov chain with transition probabilities given
by

PZ()=j1Z(t ~ )=))=P(Y, + Y, +...+Y,=})

where Y,, Y,, ... are independeni identically distributed random variables
with probability distribution {p,!. The model just described is the so-called
Galton-Watson branching process which is studied extensively in the
literature. This model is an important example of a non-ergodic type .
process for which certain difficulties in extending the usual large-sample
methods of inference arise. These are discussed in detail in Chapter 2.
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EXAMPLE 4. A SPATIAL MODEL FOR
PLANT ECOLOGY

Consider a lattice of sites (points) labelled by integer pairs (i, j) over some
region. Let X;; denote the random variable associated with the plant
located at the site (i, j). If we are interested in a study of the pattern of
infection in an array of plants we may set X;;=1 if the plant located at (i, )
is infected, and zero otherwise. It may be reasonable to assume that the
conditional distribution of X;; given all other site values depends only on
the four nearest neighbour sites, namely, on X;_,;, X;.1; X,;-,, and
X;j+1- This is a natural extension of the. Markovian assumption to the
spatial process {X;;}. Spatial processes based on the “nearest-neighbour”

formulation (as in this example) are of a recent origin. Work on statistical
procedures relevant for such models is still at a Tudimentary stage, at the
time of writing. Spatial models will not be discussed in this monograph.

d? Xi i+

Xi-vj Xij Kivvj

() /Yi’j"l

Fig. 3. Spatial ecological model.

EXAMPLE 5. A CLUSTER PROCESS FOR
POPULATION SETTLEMENTS

An important area of research in geography is the study of spacings
between settlements of human population and of sizes of settlements. It is,
frequently assumed that the settlements are located according to a spatial



Example 7. A Storage Model 5

Poisson process; thus one assumes that

P(one settlement in an area 64)= 164 +0(0A4)
P(two or more settlements in §4)=o0(5A4),
P(no settlements in §4)=1—A04 + o(5 A).

Then, it follows that thenumber of settlements in any given area A is a
Poisson random variable with mean AA.-Given the locations of the settle-
ments the size of any settlement is -assumed to follow a logarithmic series
growth distribution. One then obtains a negative binomial distribution for
the size of the population in a given area. This model is extensively used in
geography, but will not be discussed any further in this monograph.

EXAMPLE 6. A MODEL IN POPULATION
GENETICS )

Consider a population of 2N genes each of which belongs to one of the two
genotypes, say A and B. Let X (t) denote the proportion of type 4 genes in
the ith generation. Assuming that the total number of genes remains the
same from generation to generation, and neglecting selection and mutation
effects, the genes in the (¢ + 1)th generation may be assumed to be a random
sample of size 2N of genes in the rth generation. The sequence of random
variables {X (1)}, t=1, 2,..., forms a Markov chain. Conditionally on
X(t—1)=x, 2NX (t) will be a binomial random variable with success
probability x and index 2N. By taking suitable limits one can approximate
this Markov chain by a continuous time Markov process with a continuous
state space [0, 1]. Such an approximation is an example of a diffusion
process. Diffusion processes are discussed in detail in Chapter 9.

EXAMPLE 7. A STORAGE MODEL

Let X (¢) denote the annual random input during the years (t, t+1); M the
annual non-random release at the end of each year, and Z(t) the content of
the dam after the release. Then, it can be seen that

Z(t+ 1) =min{Z(t)+ X (1), K} —min{Z()+ X (1), M}

where K is the capacity of the dam, and =0, 1, 2,.... If the inputs {X (1)}
are assumed to be independent random variables, the sequence {Z(t)} will
form a Markov chain. If, however, {X (1)} is assumed to follow a Markov
"chain, {X (1), Z(t)} can be viewed as a bivariate Markov chain. Statistical
questions specifically related to storage models as such will not be covered
in the book; however, discrete Markov chains will be studied in Chapter 4.



