PROCEEDINGS OF SYMPOSIA
IN APPLIED MATHEMATICS
Volume 38

Computational
Complexity Theory

Juris Hartmanis, Editor

American Mathematical Society
Providence, Rhode island

LECTURE NOTES PREPARED FOR THE
AMERICAN MATHEMATICAL SOCIETY SHORT COURSE

COMPUTATIONAL COMPLEXITY THEORY

HELD IN ATLANTA, GEORGIA
JANUARY 5-6, 1988

The AMS Short Course Series is sponsored by the Society’s Commit-
tee on Employment and Educational Policy (CEEP). The series is under the
direction of the Short Course Advisory Subcommittee of CEEP.

Libiary of Congress Cataloging-in-Publication Data

Computational complexity theory.

p. cm. - (Proceedings of symposia in applied mathematics, ISSN 0160-7634; v. 38)

Includes bibliographies.

1. Oomputanonal complexity. I. Hartmanis, Juris. II. American Mathematical Society.
II1. Series. . .
QA267.C592 1989 511.3 89-6857
ISBN 0-8218-0131-7 . . CIP

COPYING AND REPRINTING. Individual readers of this publication, and nonprofit
libraries acting for them, are permitted to make fair use of ihe material, such as to copy an
article for use in teaching or resear¢h. Permission is granted to quote brief passages from
this publication in reviews, provided the customary acknowledgment of the source is given.

Republication, systematic copying, or multiple réproduction of any material in this
publication (including abstracts) is permitted only under license from the American Mathe-
matical Society. Requests for such permission should be addressed to the Executive Director,
American Mathematical Society, P.Q. Box 6248, Pmﬁd;noe, Rhode Island 02940.

The appearance of the code on the first page of an afticle in this book indicates the
copyright owner’s consent for copying beyond that permitied by Sections 107 or 108 of the
U.S. Cepyright Law, provided that the fee of $1.00 plus $.25 per page for each copy be paid
directly to the Copyright Clearance Center, Inc., 21 Conuess Street, Salem, Massachusetts
01970. This consent does not extend to other kinds of copying, such as eopym! for general
distribution, for advertising or promotional purposes, for creating new Collective works, or
for resale.

1980 Mathematics Subject Classification. (1985 Revision).

Primary 68Q05, 68Q10, 68Q20, 68Q75.
Copyright © 1989 by the American Mathematical Society. All rights reserved.
Printed in the United States of America.
The paper used in this book is acid-free and falls within the guidelines
established to ensure permanence and durability. @
Portions of this publication were typeset using AMS-TgX,
the American Mathematical Society’s TEX macro system.

Preface

During the last twenty-five years computational complexity theory has de-
veloped into one of the central and most active research areas of computer
science. ' It has grown into a rich and exciting mathematical theory whose
development is motivated and guided by computer. science needs as well as
technological advances. At the same time, it is clear that complexity theory,
dealing with the quantitative laws of computation and formal reasoning, is
concerned with issues and problems of direct interest to many other disci-
plines as well. In particular, complexity theory is of considerable interest to '
mathematics and some of the key open problems in complexity theory are
basic quesnons about the nature of mathematics. -

The six lectures, on which this volume is based, were given at the AMS
Short Course on Computational-Complexity Theory in conjunction with the
nmety-fourth Annual Meeting of the Society on January 5-6, 1988.

1t is our hope that these proceedings will be a good introduction to the
study of computational complexity thcory, a helpful guide to different aspects
and applications of this work and, in selective areas, communicate recent
/results and interesting open problems.

J. Hartmanis, Editor

Table of Contents

Preface

Overview of Computational Complexity Theory
Juris HARTMANIS

2

The Isomorphism Conjecture and Sparse Sets

STEPHEN R. MAHANEY....

Restricted Relativizations of Complexity Classes
RoONALD V. Book...

Descriptive and Computational Complexity
NEIL IMMERMAN

Complexity Issues in Cryptography
ALAN L. SELMAN

Interactive Proof Systems
SHAF1 GOLDWASSER

vii

ix

18

47

75

92

108

Proceedings of Symposia in Applied Mathematics
Volume 38, 1989

‘Overview of Computational Complexity Theory
JURIS HARTMANIS' |

ABSTRACT.. The purpose of this chapter is to introduce-the reader to com-
putational complexity theory by presenting the basic computational models,
definitions, and key results. Emphasis is givén to motivation and mean-
ing of results and open problems at the expense of giving mostly. outlings -
of proofs. Many results are mentioned without even hinting of preofs tp

. indicate directions of funher development of complexity theory.)

\;

1. Introducﬁon. The systematic study of cdmputatlonal coniplexity theory
has developed into ofie of the central and most active research areas of com-
‘puter science. It has grown into a rich and exciting mathemaﬁCal theory
whose development is motivated and guided by ¢bmputer science needs and
technological advances. At the same time, if is clear that complexxty theory,
“dealing with ‘the quantitative laws of computation and reasonihg; is con-
cerned with issues and problems of direct mterekt to many other disciplines
as well. It is quite likely that in the overall impact of computer scietice on our
" thinking, complexity theory will be recognized as onc of the most inﬂuentxal
intelléctual contributions. '

In particular, complexity theory is of considérable interest to mathematlcs
and some of the key open problems in complexity theory are basic questions
about the nature of mathematics. We believe that the future developnfent of
mathematics will be very strongly influenced by computér'science. We ekpect
that in the coming decades the strongest outside influence on the development
of mathematics will come from the extended use of computing and from
concepts and problems arising in computer science.. This influence on the
~“'development of mathematics is likely to be as strong as the earlier mﬂuencc
of the natural sciences.

Looking at the development of computational complexity theory, one can
observe very definite turning points and descry trends and styles in research.
The early work in complexity theory defined the basic computational models,
established the standard complexity measures, created the guiding research

" 1980 Mathematics Subject Classification (1985 Revision). anary 68Q05, 68Q20, 68Q75.

This research was supported by NSF Research Grant DCR 85-20597.
©1989 American Mathematicai Society

' 0160-7634/89 $1.00 + $.25 per page

2 ~ JURIS HARTMANIS

paradigms, established complexity classes as the dominant structural con-
cept and yielded the initial results about algorithms and complexity classes
on which complexity theory is built. Since the early seventies, motivated
by Cook’s discovery of complete languages in NP and Karp’s extension of
these concepts to combinatorial problems and other complexity classes, com-
plexity theory has been particularly concerned with the study of the feasible
oomplex;!y clagses belﬁg PSPACE. The new congepts of, resourpe bounded-
reductions and complete languages for naturai complexity classes were mod-
ifications of central concepts from, recursive function theory, but in the new
setting they initiated an unexpectedly rich and exciting area of research. This
work also raised some of the most interesting, and apparently some of the
hardest open probléms in:computer science. Thc bat known of these prob—
lems is the P =?N P question.

It is-quite surprising and impressive that in the whole awesome mathe-
matical arseénal, there seem to be no results or techniques to directly attack
these separation problems The questions about the compntatlonal power of

.- various cpmputmg modgls and rglations between different resource bounded
.computations have msed new mathematical problems which dp not appear

10:-be amenable | to any known techniques. This points out dramatically that

e wmn have only a fqgmentary undetstandm; of the quantltatwc aspeas of

computing and that most likely new proof technigues will be required to gain
' ! outstandmg We can expect that major, ;ntcllecmal battles will be

i Wt and that we, will baye quite a few surprises. -

lt;hould also be recalled that some of these scpmt;on problems are ques—

| 'qg;p about thebasic nature of mathematics and thus formal reasgning. In

essence, the P =?NP problem is the problem about the quantitative com-

‘ ,;pgtanqnal difference hetween ﬁndxng a proof for a theorem and checking a -

given proof for correctness.
Mgre recently, one. can perceive in the development of complexity theory

Y gowmg interest in the structural properties of the feasible computations.

This research has a definite flavor and has emerged. duripg: the last decade as

a.cohesive suhﬁeld with a rich set of interlocking results and problems. It is

partially characterized by interest in global properties of complexity classes,

- -the relations between. complexxty classes, logical unplwauons among certain

upsolved problems about complexity classes, and the yse of relativization to

- explore possible relationships. We shall refer to this area of work as structural

complexity. The complimentary research stream in complexity theory is more
conegerned with speclﬁc algorithms and has a more pronounced combinatorial

. flavor. -

The first three chapters of this book are concerned with structural com-
-plexity problems.

2. Basic Models and Cdlilplexity Measures. The work on foundations of

mathematics, and particularly Goedel’s incompleteness results, motivated the

"OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY 3

search for a precise formulation of what is and is not effectively computable.
The intuitively most’ saiisfying answer to this quest was given by A. M. Tur-
ing in 1936 in terms of an abstract computing device, the Turing machine.
Turing’s formulation has been shown to be equivalent to several other formu-
lations of the concept of computability and we now accept the Church-Turing
Thesis: the intuitive concept of “effectively computable” is equtvalent to com-
putability by Turing machines. All through these lectures, we will use the

-Turing machine model and its modification as oyr basic computer model.

We believe that effective computabxhty is one of the fundamental con-
cepts of mathemaucs and should be familiar to any mathemaucla,n Still, we
will shortly describe the basic one-tape Turing machine model; extensions to
multj-tape models are obvious [HU].

. - A Turing. ma,chme«}M, as illustrated below, has a finite control, an input
tape that is divided into cells, and a tape head that scans one tape cell at a
time. The tape is infinite to the right. The n lgftmost cells, for n > 0, hold
the input, which is a sequence of symbols, chosen from a subset of the fixed,
finite set of tape symbols, called input symbols. The remaining cells each
hold the blank, which is not an input symibol.

liln‘J‘vlu'ltv.{slﬁeTq»Iuleln[c'l‘el 12

FINITE
CONTROL

A Turning Machine.

FIGURE 1

A move of the Turing machine is determined by the symbol scanned by
the tape head and the state of the finite control. It consists of changing of
the state of the finite control, (erasing and) printing a symbol on the tape cell
scanned by the head, and moving the head one cell left or right.

Formally, a Turing machine (TM) is described by:

M =(Q,XT,3,q), where

@ is the finite set of states,
T is the finite set of tape symbols, including B, the blank,

4 JURIS HARTMANIS |

Z, X C I, not including B, is the set of input symbols,
d is the next move function (6 may be a partial function)

§: @xT = @ xTx{LR},

0, 9o € Q, is the start state,
F C Q is the set of accepting states.

A finite sequence x over I, x in Z*, is accepted by MifM started in state

do on the left) most tape cell, reaches an accepting state g, ¢ in F, in a finite

nuniber of moves. The set of sequences accepted by ‘M is détmted by L(M).
~ Turing made two key observations about thes¢ machines.

" First, we can éffectively list all possible 6ne ‘thbe Tﬁﬁﬁg machmes (and
this enumeration can be doné by a Turlng inachine). =

Second, there exist universal Turing machinés whick can slmulate any
other TM. More precisely, let M;, M,,..., be a standard enutfieration of one
tape TM’s. There exists a uriversal TM M, “such that ft)r all x and /"(and

an easnh' computable pamhﬁ function (x, M,))
v, Mu X,MS t(x) -
(ie, (x,M;) € L(M,) & x € L{My)). .. e N

From these two facts (and a bit of programmmg), it follows that there are
many recursively unsolvable problems (i.e., problems not solvable by TM’s
and therefore, by the Church-Turing Thesis, not effectively solvable). For
example, the halting problem for TM’s “Does M; halt on input x?” is not
recursively solvable. To see this, observe that thg existence of a TM M)
which decides the halting problem would permit us to diagonalize over all
Turing machines and exhibit a TM not on our list, producing a contradiction.

More precisely, let M,,,,, using Mp, the enumerator of M, M5,... and
the universal machine, M, act as follows: for each i; M,y accepts 1’ < M;
does not accept 1°. Clearly, if Mp exists, M., is a TM, but it is not on
our list of TM’s, since its action differs from each machine M; on input 1.
Thus, M., does not exist and (by Church-Turing Theses)‘ive conclude that
the halting problem is not solvable.

The above Turing machine model can be easily be extended to multi-tape
Turing machines and to Turing machines that compute functions.

For computational complexity ¢onsiderations, two very important exten-
sions of the Turing machine model are the generalizations to nondetermin-
istic Turing machines and'to oraé¢le Turing machines. - -~ '

' A’ nondeterministic Turing machine is a TM whose next move function &
maps Q x I into a subset 6f 'Q x I" x {L, R} (rather than a single ¢lement of
Q xI'x {L, R}). Thus, a nondeterministic TM may have ¢hbices:in selecting
the next move. Such & machiné accepts input x iff there is a sequence of
choices of the allowable moves which lead from the starting configuration to
an accepting state. '

It can be seen that if we put no time bounds on the computations, non-
determinism does not increase the computational power of Turing machines

‘. i

OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY .5

since a deterministic machine can explore all possible choices of a nondeter-
ministic TM and see if any of them leads to an accepting state. On the other
hand, as we will see very soon, for time-bounded computations the question.
of nondeterminism versus determinism leads to the key open problems of .
complexity theory, which also turn out to be profound questions about the
quantitative nature of mathematics.

-Finally, we will introduce an oracle Turing machine, which is used exten-
sively in complexity theory to investigate relativized computations.

An oracle TM is a multi-tape TM M with a di§tinguished work tape, the
query tape, and three special states: QUERY- STATE, YES-STATE, and NO-
STATE. During the computation, M may enter the QUERY-STATE and in
one operation it is trangferred to YES-STATE if the string currently on the
. query tape is in the oracle set A; otherwise, M is transferred to NO-STATE.
In either case, the query tape is erased.

The set of strings’ accepted by M with oracle set A is:

L(M") = L(M, A) _
= {xlthere is an accepting computatzon of M on x wzth oracle set A}.

"The Turing machine model, first introduced to study what is and is not ef-
’fecnvely computable, has also served well in the exploration of computational
efficiency. The two most dominant complexity measures for computations
~ are the time and space (tape of'memory) used in the computation. '

Let T and S be functions from-natural numbers to natural numbers,
T:N = N, S: N — N. Let X be a fixed finite alphabet. X* denotes all
finite sequences over Z. For x, in £*, |x| is the number of syifibols in x.

A TM, M, runs in time T(n) iff for all x in X*, M(x) halts in 7T'(|x|) or
. fewer steps.

A TM, M, runs in space S(n) iff for all x in £*, M (x) uses no more than
S{|x|) tape. cells.

A key concept in complexity theory is the complexity class consisting of all
languages acceptable in a given resource bound. We will consider complexity
- classes defined by time or space bounded Turing machines.

TIME[T(n)] = {A|A = L(M) and M runs-in time T(n)}
SPACE[S(n)} = {AjA = L(M) and M runs in S(n) space}.

It can be shown that a slight increase in the time or space bounds yields
more computational power. We state this result for space bounds.

To make this precise, we need tape bounds which are easy to compute.
More precisely, we say that §: N — N, S(n) > n, is tape or space constructible
if there exists a TM, M, which runs in S(n) tape and for all x marks off (uses)
exactly S(|x|) tape cells.

THEOREM. If S(n) is space constructible and

. R(n)
A% S =

6 : o3 JURIS HARTMANIS

‘ then
. SPACE[R(n}] < SPACE[S(n)]

. Thls result is proved by a s1mulai1on-dlagonallzatlon argument. AT’ S’(n)
space boungled machine Mp, using the universal achine; simulates machines
. using less than S(n) space and accepts if the simulated machine rejects and
rejects if the simulated machine accepts. , Because of the limit conditions
every R(n) space bounded machlne wxl‘I be simulated on some sufficiently
long mppt for which the simulation can run to’ completlon and therefore
L(Mp) is in SPACE[S(n)] - SPACE[R(n)].
- A related but sluhtly more complicated theorem holds for tim& bounded
computations. The proofs of the oorrespondmg results fof nondetemumsuc
. time bounded ¢ computauons,are quite comphcated [HU] .

It should be noted that these results also hold for relativized computations
We say that the proof techniques in the;e rpsul,ts reIatggz? We will see later
that there are many important problems in complexity theory ‘that cannot be -
solved by proof methods that relativize. The classic P =?NP problem is of

this type. In general, a'proof that a problem cannot be solved by proof tech-

niques that relativize is a strong indication that the problem is out of reach
of our current proof techniques [H]. Intuitively, we view the relativization
of a problem in two contradictory ways (say PA = NP4 and P? # NP‘) as
an “independence” result for proof techniques that relativize. At present, we
do not have a precise logical formnlauon of thesé congepts.

3. P, NP, and PSPACE. In this section we introduce the most important
oomputauonal complenty classes: the deterministic and nondeterministic
polynomial time computations, P and N P, and the polynomial space bounded
. computations, PSPACE. We also introduce the key concept of reductlons
between problems and the concept of complete problems. Let Dy,D,,... bea
standard enumeration of deterministic TM’s with standard (easily detectable)
clocks which stop their computation in polynomial time (ie., each TM M;
‘appears on the list for each k,k > 1, with a clock stopping it at n* + k,
where n = |x|). Let Ni, N,... be the corresponding enumeration of clocked
nondeterministic TM’s.

The class of polynomial time computations forms a good mathematical
~model of the feasibly computable problems We define it first in terms of
language recognition:

P = {L(D;)|z > 1}.

The class of nondetenmmstlc polynomlal time computations,
NP ={L(N)li >1},

contains many important practical problems, and consists of the computa-
tions which can be solved in polynomial tinde with a “lucky guess” of the
solution followed by a verxﬁcatlon that it is mdeed a solution. It can be seen

OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY 7

that L is in NP iff there exists a polynomial time computable predicate, R(, }
and a polynomial p() such that:

L = {x|3y)ly| £ p(|x]) and R(x,y)}}.

To indicate that the quantifiers 3 and V are polynomial bounded, we will
write 3F and vF.

PSPACE = {L(M;)|M; runs in space n* + k, some k > 1}.
NPSPACE = {L(N;)|N; runs nondeterministically in space #* + k,
some k > 1}.

Since we know that NSPACE[S(n)] € SPACE[S(n)?] [HU, Sa], we see that
"PSPACE = NPSPACE.

It is easily seen that
PC NP C PSPACE.

It is widely believed that these containments are proper, but so far these
separation problems have resisted all attempts to solve them. We view them
as among the most important and intriguing open problems.

One of the most important properties of NP, and many other complexity

 classes, is the existence of complete problems to which all other problems in
the class can be reduced to by simple computations.

A language 4, 4 C X*, is many-one polynomial time reducibleto B, B C I™*,
iff there exists a polynomial time computable function S Z* — I'* such that

x€ A& f(x)eB.

We write 4 <P B.
A language A4 is NP hard iff:

(VB)[B& NP = B <% 4.

A language A is NP complete iff 4 if in NP and A4 is NP hard.
In other words, A is NP complete if A is in NP and for any B in NP there
is an f in PF (polynomial time computable functions) such that

xeB& f(x)e A

The <Z, completeness for other complexity classes is defined similarly.

The existence of complete languages for NP and PSPACE was not so sur-
prising. The great surprise was that there were so many natural complete NP
problems which appear in computer science, operations research, mathemat-
ics and engineering. After Cook’s discovery that SA4T, the set of satisfiable
Boolean formulas in Conjunctive Normal Form (CNF), was NP complete 2
veritable goldrush fever was created in the search for different NP complete
problems [Co). The discovery of new NP complete problems has slowed
quite a bit, but it is still continuous and we now know hundreds of different

8 JURIS HARTMANIS

NP complete problems [GJ, HU]. There seem to be fewer natural PSPACE
complete problems, but even this arsenal is quite impressive.

Today we accept NP completeness as a central computational complexity
concept and as a strong indication that any problem shown to be NP complete
or hard is not feasibly computable.

The existence of NP complete problems, as well as complete problems for
many other complexity classes, can be verified by a simple construction of
a “universal” language from the machines accepting languages in the corre-
sponding complexity class. To construct the universal N P complete language,
observe that there exists a nondeterministic machine N, which can simulate
any other N; with only a polynomial increase in the computation time; let
pi() be this polynoinial. Then

T/np = { Ni#x#*|N, simulating N; on x accepts in k steps}

is an NP complete language.

To see this, note that Uyp is accepted by a nondetermmxsuc multitape
TM in linear time, thus Uyp is in NP. Furthermore, for each N; running in
time ¢; the polynomial time reduction:

X — N#x#P:‘Wl(le)
is a reduction of L(N) to Uyp. ‘
The first natural NP complete problem was the Boolean formula satisfia-
bility problem:
SAT = {F|F is a satisfiable Boolean formula in conjunctive normal form.}

It can be shown that we can restrict the CNF formulas to three terms per
clause and still have an NP complete problem.

The formula given below is in SAT, but the general difficulty of finding
satisfying assignments for such formulas can be partially surmised from this
example

= (X1 + X2+ x3)(X2 + X3 + Xa)(x) + Xy + X5)(X2 + X3 + Xs5)(x; + X3 + x4)
X(X1 + X2 + X3)(X3 + x4 + X5)(X) + X2 + X5).
THEOREM. SAT is NP complete. ;

OUTLINE OF PROOF. Clearly, SAT is in NP; a NP machine can guess a
variable assignment, evaluate the formula and accept if F the assignment
satisfies F.]

To show that SAT is NP complete, we have to show that for all 4 in NP,

A <P SAT.

That is, for any N f\inning time p(n) we must exhibit a polynomial time
algorithm that maps x onto a Boolean formula in CNF, F, such that

x€ A F,eSAT.

OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY 9

To indicate how this is done, let N be a one-tape nondeterministic 7M
which halts on all x, |x| = #, in p(n) steps. Each step of a computation on x is
described by the instantaneous description, I D, which gives the content of the
first p(n) tape cells and marks the scanned cell with the state of the machine
(we view this state and tape symbol of this cell as a combined symbol). A
computation of N on x is represented by the sequence of p(n) +11ID's each
of length p(n):

IDo,IDy,ID;, ..., IPy).

The key idea of the proof is that we can write a set of clauses which can
be satisfied iff N accepts x. The variables in these clauses will specify what
symbol appears in each tape cell for each 7D. They will insure that ID, is
the starting /D on input x, that /D, contains an accepting state, and that
for all i, 0 < i < p(n) - 1, ID;;, follows from ID; by a legal move of N.

The following variables are used to construct F,. For each symbol s that
can appear in the computation (i.e., a tape symbol, if the cell of the ID is not
currently scanned and a combined tape symbol-state if the cell is currently
scanned by N) and for each cell of each ID we introduce a variable u,; ite
The variable u, ;, is 1 iff in ID; cell ¢ contains the symbol s.

Now by a tedious but straightforward method, we can construct F,. First,
we must insure that each cell contains exactly one symbol. This can be
achieved by asserting that each cell contains a symbol, i.e., for all i and t

0<i, t<pn),
v Us it

SES

must be 1. To insure that the cell contains a unique symbol we must have
that for all / and ¢:
= V(u.r,i,t AUyir)

» s#r
is 1. The product of these expressions is satisfiable only if that each cell
contains a unique tape symbol.

Similarly, we can write out conditions that /Dy contains x in the first 7
cells, with gg marked on the first tape cell, and blanks in the remaining cells,
ie., .

Usp.0,0 A Us 01 NUs, 02 A ... Alhs,, 00(n)

where 5o denotes go and the first symbol of x, 5, the second symbol of x, etc.

To express the condition that each ID;, 1 < i < p(n) follows from the
previous one by a legal move of N, we observe that a move of N can only
affect the previously scanned cell and the cells immediately to its right and
left. Thus, the possible content of cell ¢ in ID;,, is determined by the content
ofcellst—1,tand t+ 1 of ID;, 0 < i < p(n) — I. All other cells remain
unchanged. Thus, either us;; = 4,4 or u;,;,; is changed by a legal move

10 JURIS HARTMANIS

of N. Let legal(sy, 52,53, 5) designate all legal moves of N. Then the formula

/\ (V C (Usyig—1 Asy i A usV;{i,r‘/\ “_s,i—ki,t))‘ '

0<i,1<p(n) \ legal(sy.s2,53.5)

expresses the condition that all 7D;,, follow properly from ID;.

Finally, we can easily express the last requirement that /D, contains an
accepting state.

The product of these formulas is sat:sﬁable iff there exists an accepting
computation of N on x. Thus, x is accepted iff F is satisfiable. Further-
more, it caii be seen that F, has length polynomxal in]ength of x and can be
computed in polynomial time.

With more formula juggling, we can transform F, into conjunctive normal
form and theén in a-CNF with no more than three terms per clause.

- This completes the outline of the proof. O

As mentioned earlier, Cook’s proof that SAT is NP complete opcned the
floodgate to proofs that hundreds of different problems are NP comiplete.
Almost all pnoofs of NP completeness show that a problem is in NP and
that SAT (or sothe other well known NP completé problem) can be reduced
to'it. A prbof that a problem is NP complete is now considered strong
evidence that the problem is not feasibly solvable in its full generality. Thus, -
such proofs direct attention to study of special cases and to approximations *
to the problem. It is interesting to note that some NP complete problems
have good P-time approximations and that others do not [GJ].

~Today, it is clear that NP completeness is a fundamental concept and
that the P =?NP question is onc of the most important open problems in
computer science and possibly in all of mathematics. Clearly, as it will be
seen from these lectures, we seek not only & yes or no answer to the P =
INP questxon but a general understanding of the structure of the feasible
computational complexity classes, of which the P =?NP problem is-the best
known. We believe that the study of the structure of fedsible eomputations
is one of the thost unpértant and interesting areas of computer scienee, with
relevanee to a broad area of mtellectual endeavors. - - s

The importance of the P =?N P question is further enhanced when one re<
alizes that this is a fundamental question about the computational complexity
of doing mathematics. We outline this relationship mformally below.

Let F be a reasonably rich, sound, axiomatizable formal system in wmch
the validity of a given proof can be chegked ip polynoxmal time in the length
of the theorem plus proof., For example, Presshurgcr Anthmenc Peano
Asithmetic; and Zermelo-Frankel Set Theory, properly encoded are of this
type (assuming their soundness). Then, the set of theorems provable in F
with an indicated bound on the length of the proof, is an NP complete set.

H

OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY 11

More explicitly, the following set is NP complete:

Tr = {Theorem: “Statement”. .
Proof : #%[J) The “statement” has a proof in F of length < k}.

It is interesting to note that all three formal systems mentioned abovc
yield NP complete.sets in this manner, though Pressburger Arithmetic is a
decldable theory and the other two are not decidable. We will show, in the
next sectlon, that these three NP complete sets are in a strong technical sense -
very similar to SAT.

4. Isomorphism. A careful inspection of the many NP complete problems
discovered in the early seventies revealed great similarities among them and
lead to the conjecture that they all are p-isomorphic. This conjecture was
supported by a powerful lemma about padding-functions which easily showed
that the known N P complete problems were p-isomorphic, as outlined below.

Two sets A and B, 4 € X* and B C I'*, are p-isomorphic if there exists a
bijection f: Z* — I'"* such that

x€Ae f(x)yeB
and f and f~! are polynomial time computable. We write:
A=, B.

We now state the polynomial time analogue of the Cantor-Bernstein-Myhill _

Theorem [BH].
A function f: X* — I'* is length increasing iff

(Vx)[1f(x)] > |x[].
THEOREM. If A C X* is p-reducible to B C T* and B is p-reducible to A by
length mcreasmg. p-time invertible injections, then .
A=, B.
From this theorem we can derive (BH]).

PADDING LEMMA. An NP complete set A is p-isomorphic to SAT iff there
exist two polynomial time computable functions S and D such that:

(vxyy)[D(x9y) €EAe X € A]

and
(Vx,p)[S o D(x,y) = y].

Smce all natural NP complete problems have padding and unpaddmg funo—
tions, this lemma shows that they all are p-isomorphic.

Thus, we conclude that the sets T (of theorems provable in F W1th in-
dicated bound on the length of the proof) are p-isomorphic for the earlier
mentioned formal systems (decidable and undecidable) and that they are p-
isomorphic to SAT. This observation again emphasizes the close relation
between NP complete problems and the complexity theorem proving. o

12 JURIS HARTMANIS

As a matter of fact, the p-isomorphism between Tr and SAT can be shown
to even preserve the number of solutions. If F has k satisfying assignments,
then the corresponding theorem will have exactly k dlﬁ'erent proofs of the
prescribed length.

- One way of disproving the Isomorphlsm Conjecture would be by showing
that there exist NP complete sets of sufficiently different densities such that
the densities cannot be preserved under polynomial time bijections. To pur-
sue this approach, we consider sets which contain only polynomially many
elements up to size n.

A'set S, S C X*, is sparse if for some k and all n > 1,

ISNE"| < n* + k.

Clearly, a sparse set cannot be p-isomorphic to SA7T, since SAT is t0o
dense to be mapped by a bijection onto a sparse set.
The possibility of finding sparse NP complete sets was resolved by Ma-

hanéy’s result (Mah].
" THEOREM. There exist sparse <! -complete sets in NP iff P = NP.

Though Mahaney’s result eliminated one possibility (if P # NP) of dis-
proving the Isomorphism Conjective, more recent work has cast doubts on
its validity [JY] Intuitively speaking, the structure of NP looks today far
' more intricate than it did in 1977 and there may indeed be more than one
isomorphisin degree of < -complete problems in NP.- Should there be non-
1somorph19 # ~complete problems in NP then we know that thére’ are in-
finitely y pairwise non-isomorphic complete problems and their isomor-
phism d form a rich structure (MY].

We do not have many candidates for natural NP complete problems not
1somorphic to SAT. One candidate is the set, defined by generalized Ko-
mogoroy complexlty, of strings which can be easily computed from shorter

stnngs
KWZ n?] = {x|@)y| < Ix1/2 and M,(y) = x in n? steps}.

This' set is easily seen to be in NP, but it is not known to be NP complete.
On the other hand, there are relativized worlds (i.e., worlds where all ma-
chines have access 10 a given oracle) in which the above set is NP complete
and others in which it is not. Therefore, this again seems like a very difficult
problem to decide, because of its contradictory relativizations.

Besides the many-one complete sets, complexity theory also studies Turing
complete sets. A set S is polynomial time Turing complele (denmod by <F-
complete) if S isin NP and

NPCPS,

The séarch for sparse <f-complete sets for NP has yielded a rich set of
results, some of which will be mentioned i in the next section and are further
discussed in a later chapter.

OVERVIEW OF COMPUTATIONAL COMPLEXITY THEORY 13

It should also be mentioned that if P # NP then there exist incomplete
sets in NP — P [La].

THEOREM. If P # NP, then there exists sets in NP — P such that SAT cannot
be <P, reduced to them.

It is interesting to note that if P # NP then we cannot recursively enu-
merate a list of NP machines N;, N,,,... such that for all j, L(N;) is an
incomplete language and every incomplete language is given by some L(N,,).
On the other hand, the set of complete languages of NP can be named by a
recursive list of NP machines. Furthermore, we can show that if P # NP
then there are languages in NP — P for which we cannot prove that they are
not in P. More precisely, let F be any sound, axiomatizable formal system,
then P # NP implies that there exists an 4 in NP — P such that for no N;,
L(N;) = A, is it provable in F that

L(N;) is not in P.

Furthermore, if we can prove in F that P # NP, then we know that the
above A has to be an incomplete language.

5. The Polynomial Hierarchy and Related Classes. The Polynomial Time
Hierarchy, PH, was introduced in analogy to the classic Kleene Hierarchy
from recursive function theory to classify computational problems with a
more complex logical structure than NP problems. For example, the set of
Boolean formulas with a unique satisfying assignment or the set of Boolean
formulas whose lexicographically least satisfying assignment starts with a 1 do
not seem to be in NP, and can be easily captured with additional quantifiers,
or in terms of oracle computations.

The Polynomial Time Hierarchy can be defined inductively as follows,
using relativized computations [GJ, St].

3 = NPIE = coNP,A, = PE,
a= NP)::’H;:H =CcoZ}, |, Aksr = Ph k> 1.
Here, we take for a class C, coC = {L|L in C}. We define the polynomial

hierarchy
PH =|Jz£.
k

Equivalently, PH can be defined in terms of sequences of alternating poly-
nonimally bounded quantifiers, as follows [Wr]. We recall that any L in NP
can be expressed as

L = {x|3*»)R(x,y)},

where R(,) is a polynomial time computable predicate and 3°y R(x, y) stands
for: there exists a y, |y| < p(|x]|), such that R(x, y) holds, where p() is a fixed

