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' PREFACE

In this book we present simplified methods for obtaining a com-
plete, practical filter design by inspection of a graph, requiring no
computations whatsoever. The book therefore is useful to all filter
designers, from the novice to the expert. The filter circuit elements
used are operational amplifiers and standard values of resistances
and capacitances.

The type of filters which one may construct using the graphs are
the following:

1. Low-pass (Butterworth or Chebyshev of second or fourth
orders)

2. High-pass (Butterworth or Chebyshev of second or fourth
orders)

3. Band-pass (second and higher orders)

4. Band-reject (notch)

5. Phase-shift or delay (all-pass or Bessel)

Each of the filter types is discussed in a separate chapter. At the
end of each chapter the design procedure is summarized and the
appropriate graphs are presented. Practical design suggestions are
given for each circuit considered.

Examples are given of every type of filter considered and actual
photographs of the results are included. A detailed example is pre-
sented in Sec. 2.3, which may be used as a design guideline. How-
ever, it is not necessary to read the chapters in order to use the
handbook, since all the necessary information is presented on the
summary pages of each chapter.

John L. Hilburn
David E. Johnson
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INTRODUCTION

CHAPTER

1.1 Active Filters

A filter is a device which passes signals of certain frequencies
and rejects or attenuates those of other frequencies. Passive filters
are constructed with inductors. capacitors, and resistors. but for cer-
tain frequency ranges inductors, because of their size and practical
performance limitations, are undesirable. Consequently there has
been. for some years. a trend toward replacing inductors by active
devices which simulate the effect of inductors. This trend has accel-
erated with the advances in miniaturization which have made the ac-
tive devices available at prices competitive with, and in many cases
cheaper than, those of inductors.

In this handbook we present simplified methods for con-
structing a variety of active filters having specified characteristics
with standard element values. The active device we use is the in-
tegrated circuit (1C) operational amplifier, which is briefly described
in the remainder of this chapter. Graphs are presented for each type
of filter. and. depending on the specifications, the designer may sim-
ply choose the appropriate graph and read off the circuit element
values. For the designer interested in the theoretical details, there is
a chapter of background material with numerous references pro-
vided for each filter type. However, to use the handbook, one needs
only to refer to the summary sheet preceding the graphs at the end
of each chapter.

5504592
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1.2 The Operational Amplifier

The basic element we shall use in the construction of an active
filter is the operational amplifier (op-amp), the symbol for which is
shown in Fig. 1.1. Only three terminals are shown in the figure, the
inverting input terminal (—), the noninverting input terminal (+), and
the output terminal. However, a practical op-amp is actually a multi-
terminal device. The purposes of the other terminals are specified by
the manufacturer and include, in general, power supply connections,
frequency compensation terminals, and offset null terminalis.

—_—
Fig. 1.1. A differential op-amp.

The equations we have derived in the following chapters are ob-
tained assuming zero voltage between the two input terminals of the
op-amp and zero current into the two input terminals. This is true of
the ideal op-amp, and is closely approximated by practical op-amps,
if used according to the manufacturer’s specifications.

Numerous publications are available describing in detail the
characteristics and uses of commercially available operational ampli-
fiers. (See for example, [1]-[12].)* In addition, most manufacturers
publish detailed catalogs containing information on their specific
op-amps. An extensive list of manufacturers is given in [1]. Some
well-known manufacturers include Burr-Brown Research Corp.,
Fairchild Semiconductor, Motorola, National Semiconductor, RCA,
Signetics Corp., and Texas Instruments.

The op-amp of Fig. 1.1 is a differential-input amplifier, which is
a commonly manufactured type. In general, for stable operation, 1C
op-amps require frequency compensation. Some, such as the 741,
are internally compensated. The ©nA741, AD741, MC1741, LM741,

RC741, SN72741, CA3056A, etc. are all type 741 op-amps. The
different representations are used to identify the manufacturer.

* References thus cited are listed in the Bibliography.
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Other types of compensated op-amps include the 536, 107, 5556,
740, and 747 (dual 741). Other op-amps require external compensa-
tion, specified by the manufacturer, but generally are useful for
much higher frequencies and gains. Some examples of these are the
types 709, 748, 101, and 531.

For best results in the circuit configurations given in the follow-
ing chapters, the designer should use op-amps which perform ade-
quately for the gains and frequency ranges of interest. For example,
the open-loop gains as specified by the manufacturer should be at
least 50 times the filter gain [4]. Other suggestions will be made on
the summary sheets at the end of each chapter.

1.3. Resistors and Capacitors

There are three types of resistors in common use. The carbon
composition resistor is the most widely used and is acceptable in
most noncritical filter applications. This is particularly true if the
filter is used at room temperature. In all our examples the filters
were constructed with 5% tolerance carbon  composition resistors.
These were used because they are the most economical and com-
monly available. For high-performance applications, or in instances
where temperature is important, one should use either metal-film or
wire-wound resistors.

In the case of capacitors, the ceramic disk capacitor is a very
common and economical type. However, these should be used in the
most noncritical applications. A more acceptable common type is
the Mylar capacitor, which is the type we used in most of our ex-
amples. For critical applications and high performance. polystyrene
and Teflon capacitors are good choices in most cases.

For a good discussion of resistors and capacitors, the reader is
.referred to [2], pp.- 317-319.
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LOW-PASS
FILTERS

CHAPTER

2.1. General Circuit and Equations

A low-pass filter is a device which passes signals of low
frequencies and suppresses or attenuates those of high frequencies.
1ts performance may be illustrated by its amplitude response, which
is a plot of the amplitude |H(jw)| of its transfer function H(s) versus
frequency w (radians/sec) or f (Hz), where « = 27f. In all cases we
shall take H(s) = V,(5)/V:(s), where V, is the output voltage and V,
is the input voltage. An example is shown in Fig. 2.1, where the
response represented by the broken line is the ideal case and the
response represented by the solid line is a realizable approximation
to the ideal. The value w. (or in Hz, f. = w./27) is the cutoff
frequency defined as the point at which |H(jw)| is 1/V2= 0.707

Actual ”

ANE

t=— Passband —Stopband ~~——=

[ HCjuo |

LY W {radiens/ second)

Fig. 2.1. Low-pass amplitude response.
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times its maximum value. shown here as 4. The passband is the
range 0 < @ < w, and the stopband is the range v > ..

Alternately the amplitude response may be plotted as amplitude
in decibels (dB), which we denote by a, versus frequency w (or f), or
versus log w (or log f). An example is shown in Fig. 2.2, where it
may be seen that cutoff corresponds to « = —3 dB.

log w

log wy

X (dB)

Fig. 2.2. Ampilitude response in dB. -

A second-order approximation to an ideal low-pass filter is
achieved by the transfer function

Vo(s) _ K
Vis)y s2+as+b

2.1

where @ and b are properly chosen constants and K is a constant
[13]. The term “second-order” refers to the degree of the denomina-
tor polvnomial. Higher order transfer functions are like Eq. (2.1) ex-
cept that the denominator is of higher degree. The gain of the low-
pass filter is the value of its transfer function at s = 0, and is given in
the case of Eq. (2.1) by gain = K/b.

There are any number of ways of obtaining low-pass filters
using active devices in lieu of inductors. (See, for example [2], [6],
[13], {14]).) The method we use is that of Sallen and Key {15], in
which the active device is an operational amplifier (op-amp), de-
scribed in Chapter 1. A Sallen and Key second-order low-pass filter
is shown in Fig. 2.3, where the resistors and capacitors are properly
chosen 1o realize given values of a and b in Eq. (2.1). The op-amp,
together with the resistors R; and R,, cgpstitutes a voltage-con-
trolled voltage source (VCVS), and hence the Sallen and Key net-
work is of the VCVS type.



