- Neurocomputing

Robert Hecht-Nielsen

NEUROCOMPUTING

Robert Hecht-Nielsen

HNC, Inc. and University of California, San Diego

A
vy
Addison-Wesley Publishing Company

Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam ¢ Bonn
Sydney e Singapore ¢ Tokyo ¢ Madrid e San Juan

ANZA, ANZA Plus, AXON, User Interface Subroutine Library, and UISL are
trademarks of HNC, Inc. All rights reserved. ©1987, 1988, 1989 by HNC, Inc.
The distinctive list of UISL commands (including AL-
LOCATE NEUROCOMPUTER, LOAD NETWORK, UNLOAD NETWORK,
ITERATE, PUT.STATES, PUT_WEIGHTS, PUT_CONSTANTS,
GET.STATES, GET_WEIGHTS, GET.CONSTANTS, SAVE NETWORK, and
DEALLOCATE NEUROCOMPUTER) are ©1987, 1988 by HNC, Inc.

Library of Congress Cataloging-in-Publication Data

Hecht-Nielsen, Robett.
Neurocomputing / Robert Hecht-Nielsen.
. Cm.
Includes bibliographical references.
ISBN 0-201-09355-3
1. Neural computers. 1. Title.
QA76.5.H4442 1989
006.3--dc20 89-18261
CIp
Copyright ©1990 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.
ABCDEFGHIJ-(D0)-943210

Preface

Neurocomputing is a subject that has captivated the interest of thousands of
technologists, scientists, and mathematicians. The idea of training a system
to carry out an information processing function (instead of programming it)
has intrinsic appeal, perhaps because of our personal familiarity with training
as an easy and natural way to acquire new information processing capabilities.
Neurocomputing systems are often endowed with a “look and feel” vaguely
reminiscent of animals. Like a pet, this is a technology that is easy to fall in
love with. I did, 22 years ago.
I hope you find this book useful and enjoyable.

About This Book

The author of this book is an industrialist, an adjunct academic, and a phi-
lanthropist without financial portfolio. Activities of these sorts heighten one’s
awareness of the need for technology textbooks to have industrially oriented ma-
terial sprinkled in with the purely academic grist. This book is designed with this
idea in mind. It contains auxiliary material on subjects as diverse as business
plan development, venture capital, proposal writing, and development project
planning and management. Discussions about the history of neurocomputing
and historical vignettes summarizing the stories of pioneering neurocomputing
companies are also presented. The observations that have led to the decision to
include this material are sketched below.

Until about 1960, the primary focus of technology was the near-term better-
ment of the life of the average human being (with the development of weaponry
running a close second). However, over the past 30 years some countries (such

ii

iV Preface

as the United States and the Soviet Union — but not, for example, Japan) have
built up large technology research infrastructures (separate from the science and
mathematics infrastructures) that are, to a distressing extent, disconnected from
the practical civilian and military applications of technology (both short-term
and long-term). These infrastructures have diverted large numbers of highly
talented technologists from useful work. A concomitant of the rise of these in-
frastructures has been the emergence of a reprehensible snobbery that places all
technological efforts into one of two categories: high-tech or I’d-rather-die-than-
do-that. The social damage caused by these aberrations has been enormous.

It is now time for technology to regain its traditional primary focus. The
formula is the same one that has always worked. Namely: young technolo-
gists should work on design, project management, product development, and/or
manufacturing. Those of supreme talent and/or pedagogic ability who are ap-
propriately motivated and who have proven themselves in practical work can,
later in their careers, carry out research and/or teach technology in universities.
By addressing some of the issues surrounding the practice of technology in in-
dustry, as part of the presentation of a popular and potentially important new
information processing technology, perhaps this book can, in some small way,
serve to help bring about this renaissance.

Use of this Book in a Course

This text is designed to provide technologists, scientists, and mathematicians
with an introduction to the field of neurocomputing. It is intended for use
at the graduate level, although seniors would typically have all of the required
background. The text is written to support a year-long course. It can also be
used for shorter courses if some of the material is skipped or skimmed.

A year-long course can go through the whole book, in order. This would
afford an opportunity to explore all three aspects of the subject (theory, imple-
mentation, and applications). Instructors can expand or contract the various
topics to fit their personal preferences.

A semester-long course can probably still cover the whole book. Chapters
1, 2, 3, 4, 5, and 9 can be covered in detail, and the rest of the book can be
skimmed. A quarter-long course can cover most of Chapters 1, 2, 3, 4, and
3, along with a small amount of material selected by the instructor from other
chapters.

Concurrent Laboratory Projects

One of the realities of neurocomputing is that hands-on practice is as impor-
tant as classroom learning. Thus, students learning neurocomputing should,
if possible, be involved in laboratory projects concurrent with their classroom
instruction. This activity can be done on a group basis or, preferably, on an

Preface V

individual basis. To help in the planning of a laboratory section to complement
a course based on this book, the following suggestions for projects are offered:

o Develop a backpropagation image compression system based on the example
in Section 9.2.2. Images of the members of the class can be used for training
and testing, with images of automobiles used to demonstrate the problems
caused by data that are not statistically consistent with those used during
training.

¢ Simulate a broomstick-balancing system based upon visual feedback, as dis-
cussed in Section 9.3.1.

o Write a neurosoftware description (in AXON, for example) of a famous
neural network architecture, such as the Boltzmann Machine or GMDH and
build a demonstration program that illustrates the architecture’s capabilities.

o Solve a “toy problem” using multiple neural networks. The group can first
define a suitable toy problem, and then solve it.

o Carry out experimental validation of theoretically derived results from
Chapters 3 through 6.

¢ Develop variants of some of the simpler neural networks described in Chap-
ters 4, 5, and 6.

¢ Define and solve a simple application problem from start to finish.

It is suggested that projects be organized via the writing of a brief (one or two
page) development plan in accordance with the planning approach presented in
the Appendix. Projects can last from 1 week to 4 weeks and can be concluded
with a detailed report describing the development plan, the work carried out, the
results, the software and neurosoftware developed (with listings and permanent
archival diskette provided), and recommendations for future work.

Acknowledgments

Writing a textbook involves a major commitment of time and energy and a
commensurate loss of availability of that time and energy for other uses. Robert
L. North and Gerald I. Farmer (President and Executive Vice President of
HNC, Inc.) have been extremely generous in supporting the development of
this book during the past 3 years. Thanks are also due to the 100+ students who
have patiently sat through an entire year of ECE-270 A/B/C (Neurocomputing)
in the Electrical and Computer Engineering Department of the University of
California, San Diego in 1986/1987, 1987/1988, and 1988/1989. They have
been both the guinea pigs for the material of the text and the most helpful
assistants in making improvements. The class of 1989/1990 has been helpful
in doing final proofreading. Special thanks are also due Lawrence Milstein and
Manuel Rotenberg, the successive Chairs of the UCSD ECE Department over
the past 4 years, for their unwavering support. Also, the lively interdisciplinary
interaction in neural networks at UCSD (across 14 academic departments and
the Salk Institute) has been of great value in this project.

Vi Preface

The process of synthesizing and refining the material for this book was
aided significantly by the following people, whose help is greatly appreciated:
Karen Haines (teaching and laboratory assistant for ECE-270 during 1987/1988
and 1988/89), Barton Addis, Timur Ash, Dale Barbour, Steve Biafore, Groff
Bittner, Richard Bocker, Dale Bryan, Bill Caid, Maureen Caudill, Subhasis
Chaudhuri, Jen Chou, Brad Coté, David DeMers, Duane Desieno, Andrew Dia-
mond, Michael Fennel, Alexander Glockner, Joel Gross, Takeo Hamada, Adam
Harris, Hillary Heinmets, David Holden, Geoffrey Hueter, William Jasper,
Richard Kasbo, Fouad Kiamilev, John Kim, Myung Soo Kim, Paul Klimowitch,
Dennis Kocher, Hari Kuchibhotla, Markham Lasher, Yun-Parn Thomas Lee,
Harry Luithardt, Stephen Luse, Tracy Mansfield, Harold McBeth, John McDon-
nell, John Mclnerney, Martin McNeill, Robert Means, Phillippe Mercier, Hoa
Nguyen, David Olsen, Robert Osborne, Frank Overton, Mark Plutowski, Carl
Rindfleisch, John Robinson, John Sabin, Robert Sasseen, Valery Secarea, Holly
Shen, Vincent Stuart, Robert Tekolste, Max S. Tomlinson, Anthony Weath-
ers, Eric Wolin, Barnes Woodhall, and Hedong Yang. Comments by Stephen
Grossberg and David Casasent were of great value. The author’s numerous con-
versations about the contents of this book with Duane Desieno, Robert Sasseen,
and Geoffrey Hueter have been both enjoyable and helpful. Harley Hahn’s as-
sistance is also appreciated.

The greatest thanks are owed to Carol Bonomo. She did the majority of
the typing, many of the corrections, the initial versions of the figures, and the
initial proofreading. She also functioned as a critic, promoting a number of
important improvements in the book. Without Carol’s contributions this book
would not exist. Anna Ewers’ help with finishing the last draft of the book has
also been invaluable.

The love, patience, understanding, and encouragement of my wife Judi
Hecht-Nielsen and our son Andy Hecht-Nielsen are greatly appreciated. Also
reflected in this book are the early influences of my mother, Elisabeth Kost;
father, Robert Hecht-Nielsen; and grandmother, Jessie Laing Wilson; and the
later influences of friends Roy McAlister, David Hestenes, and Alan Wang.

This is a perfect opportunity to thank all of those individuals and organi-
zations that so generously supported my neurocomputing activities when the
subject was not fashionable. These include (in chronological order, from 1968
through 1986) the following individuals and organizations: Rennie Molumby,
Roy McAlister, Jim Torbert, Hap James, Sid Swanson, Russ Yost, Jerald Bauck,
Don Spencer, Todd Gutschow, Robert L. North, Ira Skurnick, Charles Kellum,
Robert Launer, Jagdish Chandra, Hugo Poza, Richard Booton, Terry Dolan,
Paul Glenn, A. T. LaPrade, Mark Collins, and Gordon Davidson; Arizona State
Hospital, Arizona State University, TransEnergy Corporation, Jet Propulsion
Laboratory, Chandler Flyers, Ramada Laboratories, Advance Aviation, Talley
Industries, TAD Tech, Motorola, and TRW. The encouragement and generous
support of DARPA over the years 1982 through 1986 is especially appreciated.

Special thanks go to my friend and business partner Todd Gutshow. He has
been a constant source of new insights and ideas, as well as a superb critic and

Preface vii

evaluator. During our years at TRW, Todd and I accumulated neurocomputing
applications skills and advanced the state of the art in implementation technol-
ogy. These experiences became the launching pad for the development of a new
generation of approaches at HNC. His help has been an essential ingredient for
this book.

After the initial draft of the book was completed it was reviewed by Harold
K. Brown, David Casasent, Hans Peter Graf, Stephen Grossberg, Karen Haines,
David Hestenes, Stefan Shrier, and Carme Torras. Their many comments and
criticisms were of enormous value. Many thanks to them for their generous
help.

Finally, I want to thank Tom Robbins of Addison-Wesley for his encour-
agement, patience, and wise counsel. It was almost axiomatic that a publisher
with a hyphenated name would turn out to be a good choice.

Contents

1 Introduction: What Is Neurocomputing?

[.1 Introduction
1.1.1 Overview of Neurocomputing
1.2 Neurocomputingasa Subject
1.3 The Relationship Between Neurocomputing and Neuroscience . .
1.3.1 Neurocomputing and Neuroscience
1.3.2 Hype e
1.4 History of Neurocomputing
1.4.1 TheBeginning,
1.4.2 First SUCCESSES v v v vt e e e e e
1.43 TheQuiet Years v v i i i it i e et e ie o
1.4.4 Neurocomputing TakesOff
1.5 GuidetoThisBook

Neural Network Concepts, Definitions, and Building Blocks

2.1 Neural Networks
2.1.1 Definition of a Neural Network

2.2 ConnectionS i i it e e e e
2.2.1 Connection Signal Data Types
222 Input Classes o . v v it e e e e e
2.2.3 Connection GeoOmetries - v v v

2.3 ProcessingElements
2.3.1 Transfer Functions and Local Memories
232 Slabs.

2.4 N-Dimensional Geometry
241 Cubes e

X Contents

24.2 SpheresandCubes

3 Learning Laws: Self-Adaptation Equations

3.1

3.2

33

3.4

3.5

3.6

4.1

4.4

4.5

5.1

Definitions,
3.1.1 Information Environments
3.1.2 WeightSpace i
3.1.3 Varietiesof Training
Coincidence Learning
3.2.1 Hebb’s Biological Learning Law
3.2.2 The Linear Associator.o oo v ...
323 Hebb’sLearningLaw
3.2.4 The Pseudoinverse Formula
Performance Learning
331 The ADALINE.
3.3.2 The Least Mean Squared Error Goal
3.3.3 The Widrow LearningLaw
Competitive Learning
34.1 KohonensLayer.......................
3.4.2 The Kohonen LearningLaw
3.4.3 Estimation of the Probability Density Function
Filter Learning
3.5.1 The Flywheel Equation
352 Thelnstar
3.5.3 Grossberg’s Learning Law
Spatiotemporal Learning
3.6.1 Temporal Sequences
3.6.2 The Kosko/Klopf LearningLaw

Associative Networks: Data Transformation Structures
Basic Definitions

4.3.1 Definition of the Learnmatrix Network
4.3.2 Learnmatrix Optical Analysis
4.3.3 Learnmatrix Capacity
Recurrent Associative Networks
44,1 The Hopfield Network
4.4.2 The Brain State in a Box Network
4.4.3 Associative Network Theorems
Association Fascicles

Mapping Networks: Multi-Layer Data Transformation Structures
The Mapping Implementation Problem
5.1.1 Mapping Neural Networks
5.1.2 Measuring Function Approximation Accuracy

Contents X1

5.1.3 Training and Overtraining 115
5.1.4 Relationship to Statistical Regression 120
5.2 Kolmogorov’s Theorem 122
5.2.1 Implications for Neurocomputing 123
5.3 The Backpropagation Neural Network 124
5.3.1 Architecture of the Backpropagation Network 125
5.3.2 Backpropagation Error Surfaces 128
5.3.3 Function Approximation with Backpropagation 131
5.3.4 Backpropagation Learning Laws 133
5.4 Self-OrganizingMap 138

5.4.1 Architecture of the Self-Organizing Map Neural Network . 138
5.4.2 Examples of the Operation of the Self-Organizing Map . . 141

5.5 Counterpropagation Network 147
5.5.1 Architecture of the Counterpropagation Neural Network . 147
5.5.2 Variants of the Counterpropagation Network 152

5.6 Group Method of Data Handling 155
5.6.1 The GMDH Neural Network 156
562 GMDH Lessons 162

Spatiotemporal, Stochastic, and Hierarchical Networks: Frontiers of Neu-

rocomputing 164

6.1 Spatiotemporal Networks 164
6.1.1 Spatiotemporal Pattern Recognizer Neural Network 166
6.1.2 Recurrent Backpropagation Neural Network 182

6.2 Stochastic Networks 192
6.2.1 Finding Global Minima by Simulated Annealing 192
6.2.2 The Boltzmann Machine Network 195

6.3 Hierarchical Networks 198
6.3.1 Neocognitron Network 198
6.3.2 Combinatorial Hypercompression 210

6.3.3 Attention Mechanisms: Segmentation and Object Isolation 214

Neurosoftware: Descriptions of Neural Network Structure 220
7.1 Neurosoftware: Coded Descriptions of Neural Network Structure 221
7.2 Software Interfaces Between Computers and Neurocomputers . . 222
7.3 AXON Language. v v i e 226
7.3.1 AXON Structure 226
7.3.2 Parameter Definition Block 229
7.3.3 Processing Element and Slab Definition Block 231
7.3.4 Network Creation and Connection Definition Block 233
7.3.5 Scheduling Function Block 238
7.3.6 Function Definition Block 239
7.4 AXONExamples 242
7.4.1 Backpropagation 242

7.4.2 Counterpropagation 248

xii Contents

8 Neurocomputers: Machines for Implementing Neural Networks 259
8.1 Neurocomputer Fundamentals 260
8.1.1 Neurocomputers as Computer Coprocessors 260
8.1.2 Performance Medsures« v v oo 263
8.1.3 TaxonOmY . . . v v vt vt oot 266
8.2 Analog and Hybrid Neurocomputer Design Fundamentals 272
8.2.1 OVEIVIEW . . o v o v e e e e e e e e e e e e e 272
8.2.2 Primacy of Input Processing and Weight Madification . . . 276
8.2.3 Transfer Function Implementation 284
8.3 Analog and Hybrid Neurocomputer Design Examples 287
8.3.1 Electro-Optic Neurocomputer 287
8.3.2 Optical Neurocomputer 289
8.3.3 MNOS/CCD Electronic Neurocomputer Chip. 292
8.4 Digital Neurocomputer Design Fundamentals 297
8.4.1 Overview o i i i e e e 297
8.4.2 Fully Implemented Design Approaches 298
8.4.3 Virtual Design Approaches 301
8.5 Digital Neurocomputer Design Examples. 305
8.5.1 Mark III Neurocomputer «... 305
8.5.2 Mark IV Neurocomputer 307

9 Neurocomputing Applications: Sensor Processing, Control, and Data
Analysis 317
9.1 Neurocomputing Applications Engineering 317
9.1.1 Solving Problems with Neurocomputing 318
9.1.2 Functional Specification Development 320
9.2 Sensor Processing 323
9.2.1 Character Recognizer 323
9.2.2 Cottrell/Munro/Zipser Technique 325
9.2.3 Noise Removal from Time-Series Signals 337
9.3 Control e e e e 342
9.3.1 Vision-Based Broomstick Balancer 342
9.3.2 Automobile Autopilot oo, 345
9.4 Data Analysis« e 349
9.4.1 Loan Application Scoring 349
0.42 NETtalk. e 351
9.4.3 The Instant Physician 354

A Neurocomputing Projects: Developing New Capabilities that Succeed in
the Marketplace 358
A.1 Business Plan Development 359
A.1.1 Project Definition 361
A.1.2 DefiningGoals 362
A.1.3 Technical Feasibility 363

A.1.4 Market Analysis, 363

Contents Xiil

A.1.5 DevelopmentPlan. 368
A.1.6 Marketingand SalesPlan. 371
A.1.7 ProductionPlan 374
A.1.8 Organization and Personnel 376
A19 Schedule 377
ALIOBudget 378
A.1.11 Financing and Ownership 383
A2 WritingaProposal 388
A21 RFPsandRFQs 389
A.2.2 Proposal Organization 389
A.2.3 Proposal Writing 392
A.3 Planning and Managing Development 394
A.3.1 The Development Planning Process 394
A.3.2 Project Management 402

INDEX 422

Introduction: What Is
Neurocomputing?

Neurocomputing is the technological discipline concerned with information pro-
cessing systems (for example, neural networks) that autonomously develop oper-
ational capabilities in adaptive response to an information environment. Neu-
rocomputing is a fundamentally new and different approach to information
processing. It is the first alternative to programmed computing, which has
dominated information processing for the last 45 years. This book provides
a graduate-level introduction to neurocomputing, including theory, implemen-
tation, and applications.

This chapter begins with an overview of neurocomputing. The structure
of the field of neurocomputing is then discussed, followed by a discussion of
the relationship between neurocomputing and neuroscience. The history of the
subject is then surveyed, and finally, a brief overview of the structure of the rest
of the book is presented.

1.1 Introduction

1.1.1 Overview of Neurocomputing

From the advent of the first useful electronic digital computer (ENIAC) in 1946
[23] until the late 1980s, essentially all information processing applications used
a single basic approach: programmed computing. Solving a problem using pro-
grammed computing involves devising an algorithm and/or a set of rules for
solving the problem and then correctly coding these in software (and making
necessary revisions and improvements).

Clearly, programmed computing can be used in only those cases where the
processing to be accomplished can be described in terms of a known procedure

2 Chapter 1/ Introduction: What Is Neurocomputing?

or a known set of rules. If the required algorithmic procedure and/or set of rules
are not known, then they must be developed — an undertaking that, in general,
has been found to be costly and time consuming. In fact, if the algorithm
required is not simple (which is frequently the case with the most desirable
capabilities), the development process may have to await a flash of insight (or
several flashes of insight). Obviously, such an innovation process cannot be
accurately planned or controlled. Even when the required algorithm or rule set
can be devised, the problem of software development still must be faced.

Because current computers operate on a totally logical basis, software must
be virtually perfect if it is to work. The exhaustive design, testing, and itera-
tive improvement that software development demands makes it a lengthy and
expensive process.

A new approach to information processing that does not require algorithm
or rule development and that often significantly reduces the quantity of soft-
ware that must be developed has recently become available. This approach,
called neurocomputing, allows, for some types of problems (typically in areas
such as sensor processing, pattern recognition, data analysis, and control), the
development of information processing capabilities for which the algorithms or
rules are not known (or where they might be known, but where the software
to implement them would be too expensive, time consuming, or inconvenient
to develop). For those information processing operations amenable to neuro-
computing implementation, the software that must be developed is typically
for relatively straightforward operations such as data file input and output, pe-
ripheral device interface, preprocessing, and postprocessing. The Computer
Aided Software Engineering (CASE) tools often used with neurocomputing sys-
tems can frequently be utilized to build these routine software modules in a
few hours. These properties make neurocomputing an interesting alternative to
programmed computing, at least in those areas where it is applicable.

Formally, neurocomputing is the technological discipline concerned with
parallel, distributed, adaptive information processing systems that develop in-
formation processing capabilities in response to exposure to an information
environment. The primary information processing structures of interest in neu-
rocomputing are neural networks (although other classes of adaptive informa-
tion processing structures are sometimes also considered, such as learning au-
tomata, genetic learning systems, data-adaptive content addressable memories,
simulated annealing systems, associative memories, and fuzzy learning systems).
The formal definition of a neural network follows.

B DEFINITION 1.1.1 A neural network is a parallel, distributed information pro-
cessing structure consisting of processing elements (which can possess a lo-
cal memory and can carry out localized information processing operations)
interconnected via unidirectional signal channels called connections. Each
processing element has a single output connection that branches (“fans out”)
into as many collateral connections as desired; each carries the same signal

1.1 Introduction 3

— the processing element output signal. The processing element output sig-
nal can be of any mathematical type desired. The information processing
that goes on within each processing element can be defined arbitrarily with
the restriction that it must be completely local; that is, it must depend only
on the current values of the input signals arriving at the processing element
via impinging connections and on values stored in the processing element’s
local memory. m

One might wonder why this particular type of Multiple Instruction Multiple
Data (MIMD) parallel processing architecture should be worthy of such concen-
trated attention (beyond the obvious fact that biological neuron networks seem
to be neural networks in the above sense). In particular, why not simply study
some of the more general MIMD architectures (such as dataflow architectures
{57]) which contain neural networks as a subclass? Surprisingly, no completely
satisfactory answer to this question is yet known. However, it seems very likely
to me that the neural network definition will someday be shown to be a particu-
larly good compromise that allows substantial information processing capability
while at the same time providing sufficient structure to allow the development of
efficient general-purpose implementations (methods for efficiently implementing
arbitrary general MIMD architectures are not known and may not exist). All we
can say for sure now is that the neural network definition does produce a class
of powerful and potentially useful information processing structures that lend
themselves to efficient implementation by general-purpose neurocomputers. It
is these consequences of the definition that we will discuss in this book.

To illustrate the nature of neural networks we shall describe briefly a clas-
sical neural network architecture known as the perceptron. Because it has been
largely superceded by more powerful neural networks (for example, some of
those discussed in Chapters 3, 4, 5, and 6), the perceptron is primarily of his-
torical interest, although it is still occasionally used.

The perceptron is a neural network that consists of one or more of the
processing elements shown in Figure 1.1 (which are themselves also referred
to individually as perceptrons). For simplicity, we shall concentrate on the
operation of a single perceptron processing element.

The goal of the perceptron is illustrated in Figure 1.2. Here we see two
classes of patterns (class 0 and class 1). A pattern is simply a point in n-
dimensional space (the coordinates of the point represent attributes or features
of the object to be classified, such as weight, height, density, or frequency).
In the case illustrated in Figure 1.2 (which is the situation of interest rela-
tive to the perceptron), the two classes can be separated from each other by
a simple linear hyperplane (in 2-dimensional space a hyperplane is a line, in
3-dimensional space it is an ordinary plane, and in n-dimensional space it is
an (n — 1)-dimensional flat surface). Classes that have this property are termed
linearly separable. The goal is to find a set of weights or adaptive coefficients
wy, W1,...,Ww, (Which, it turns out, determine a unique hyperplane — as will

4 Chapter 1/ Introduction: What Is Neurocomputing?

X0=1 X3 Xo s Xp

P
“Correct” output
(supplied during
training)

-~

n

1if Z w; X;ZO
i=0
n

0if Z W,'X,'<0
i=0

Fig. 1.1. e The perceptron. The perceptron has an input consisting of an (n + 1)-
dimensional vector x = (xgp,X;,X2,...,Xs), Where xo is permanently set to 1 (this is
called a bias input). The output of the perceptron is 1 if the weighted input sum xpwp +
X\Wy + -+ XpWy 18 g}eater than or equal to zero; the output is O if this weighted input
sum is less than zero.

be discussed in Chapter 3) such that the output of the perceptron is 1 if the in-
put pattern vector (xi, x2,...,X,) belongs to class 1, and O if the pattern vector
belongs to class 0.

The weights are stored within the processing element and are automatically
modified by the processing element itself in accordance with the perceptron
learning law. This learning law operates during a training process where the
perceptron is shown a sequence of randomly selected x pattern vectors (one at
a time). Each time an x example is presented to the perceptron (as part of
a training trial), the system is also told to which class (0 or 1) the example
belongs. On each training trial, the learning law modifies the weight vector w in
accordance with the equation

wheW = wold (v — y/) X, (1.1)

where y is the correct class number of the input pattern x (which is supplied,
along with x, on each training trial), and)’ is the output of the perceptron. The
idea of this learning law is that, if the perceptron makes an error (y — ') in
its output, this error indicates a need to reorient the w hyperplane so that the
perceptron will tend not make an error on this particular x vector (or any other
vector near it) again. Note that the output error (y — y’) will be 0 if the output
of the perceptron is correct. In this situation the weight will not change. If the
output is wrong, then (y — ') will be either +1 or —1, and w will be modified
appropriately (so that the perceptron will do better in the future).

The perceptron was invented in 1957 by Frank Rosenblatt [199] (who also
wrote Principles of Neurodynamics, one of the two early books on neurocom-
puting [198] — the other being Automat und Mensch by Karl Steinbuch [216]).
Following his invention of the perceptron, Rosenblatt proved that, given linearly
separable classes, a perceptron will, in a finite number of training trials, develop

