- Neurocomputing

Robert Hecht-Nielsen




NEUROCOMPUTING

Robert Hecht-Nielsen

HNC, Inc. and University of California, San Diego

A
vy
Addison-Wesley Publishing Company

Reading, Massachusetts ¢ Menlo Park, California ¢ New York
Don Mills, Ontario ¢ Wokingham, England ¢ Amsterdam ¢ Bonn
Sydney e Singapore ¢ Tokyo ¢ Madrid e San Juan



ANZA, ANZA Plus, AXON, User Interface Subroutine Library, and UISL are
trademarks of HNC, Inc. All rights reserved. ©1987, 1988, 1989 by HNC, Inc.
The  distinctive list of UISL commands (including AL-
LOCATE NEUROCOMPUTER, LOAD NETWORK, UNLOAD NETWORK,
ITERATE, PUT.STATES, PUT_WEIGHTS, PUT_CONSTANTS,
GET.STATES, GET_WEIGHTS, GET.CONSTANTS, SAVE NETWORK, and
DEALLOCATE NEUROCOMPUTER) are ©1987, 1988 by HNC, Inc.

Library of Congress Cataloging-in-Publication Data

Hecht-Nielsen, Robett.
Neurocomputing / Robert Hecht-Nielsen.
. Cm.
Includes bibliographical references.
ISBN 0-201-09355-3
1. Neural computers. 1. Title.
QA76.5.H4442 1989
006.3--dc20 89-18261
CIp
Copyright ©1990 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written
permission of the publisher. Printed in the United States of America.
ABCDEFGHIJ-(D0)-943210



Preface

Neurocomputing is a subject that has captivated the interest of thousands of
technologists, scientists, and mathematicians. The idea of training a system
to carry out an information processing function (instead of programming it)
has intrinsic appeal, perhaps because of our personal familiarity with training
as an easy and natural way to acquire new information processing capabilities.
Neurocomputing systems are often endowed with a “look and feel” vaguely
reminiscent of animals. Like a pet, this is a technology that is easy to fall in
love with. I did, 22 years ago.
I hope you find this book useful and enjoyable.

About This Book

The author of this book is an industrialist, an adjunct academic, and a phi-
lanthropist without financial portfolio. Activities of these sorts heighten one’s
awareness of the need for technology textbooks to have industrially oriented ma-
terial sprinkled in with the purely academic grist. This book is designed with this
idea in mind. It contains auxiliary material on subjects as diverse as business
plan development, venture capital, proposal writing, and development project
planning and management. Discussions about the history of neurocomputing
and historical vignettes summarizing the stories of pioneering neurocomputing
companies are also presented. The observations that have led to the decision to
include this material are sketched below.

Until about 1960, the primary focus of technology was the near-term better-
ment of the life of the average human being (with the development of weaponry
running a close second). However, over the past 30 years some countries (such

ii



iV Preface

as the United States and the Soviet Union — but not, for example, Japan) have
built up large technology research infrastructures (separate from the science and
mathematics infrastructures) that are, to a distressing extent, disconnected from
the practical civilian and military applications of technology (both short-term
and long-term). These infrastructures have diverted large numbers of highly
talented technologists from useful work. A concomitant of the rise of these in-
frastructures has been the emergence of a reprehensible snobbery that places all
technological efforts into one of two categories: high-tech or I’d-rather-die-than-
do-that. The social damage caused by these aberrations has been enormous.

It is now time for technology to regain its traditional primary focus. The
formula is the same one that has always worked. Namely: young technolo-
gists should work on design, project management, product development, and/or
manufacturing. Those of supreme talent and/or pedagogic ability who are ap-
propriately motivated and who have proven themselves in practical work can,
later in their careers, carry out research and/or teach technology in universities.
By addressing some of the issues surrounding the practice of technology in in-
dustry, as part of the presentation of a popular and potentially important new
information processing technology, perhaps this book can, in some small way,
serve to help bring about this renaissance.

Use of this Book in a Course

This text is designed to provide technologists, scientists, and mathematicians
with an introduction to the field of neurocomputing. It is intended for use
at the graduate level, although seniors would typically have all of the required
background. The text is written to support a year-long course. It can also be
used for shorter courses if some of the material is skipped or skimmed.

A year-long course can go through the whole book, in order. This would
afford an opportunity to explore all three aspects of the subject (theory, imple-
mentation, and applications). Instructors can expand or contract the various
topics to fit their personal preferences.

A semester-long course can probably still cover the whole book. Chapters
1, 2, 3, 4, 5, and 9 can be covered in detail, and the rest of the book can be
skimmed. A quarter-long course can cover most of Chapters 1, 2, 3, 4, and
3, along with a small amount of material selected by the instructor from other
chapters.

Concurrent Laboratory Projects

One of the realities of neurocomputing is that hands-on practice is as impor-
tant as classroom learning. Thus, students learning neurocomputing should,
if possible, be involved in laboratory projects concurrent with their classroom
instruction. This activity can be done on a group basis or, preferably, on an



Preface V

individual basis. To help in the planning of a laboratory section to complement
a course based on this book, the following suggestions for projects are offered:

o Develop a backpropagation image compression system based on the example
in Section 9.2.2. Images of the members of the class can be used for training
and testing, with images of automobiles used to demonstrate the problems
caused by data that are not statistically consistent with those used during
training.

¢ Simulate a broomstick-balancing system based upon visual feedback, as dis-
cussed in Section 9.3.1.

o Write a neurosoftware description (in AXON, for example) of a famous
neural network architecture, such as the Boltzmann Machine or GMDH and
build a demonstration program that illustrates the architecture’s capabilities.

o Solve a “toy problem” using multiple neural networks. The group can first
define a suitable toy problem, and then solve it.

o Carry out experimental validation of theoretically derived results from
Chapters 3 through 6.

¢ Develop variants of some of the simpler neural networks described in Chap-
ters 4, 5, and 6.

¢ Define and solve a simple application problem from start to finish.

It is suggested that projects be organized via the writing of a brief (one or two
page) development plan in accordance with the planning approach presented in
the Appendix. Projects can last from 1 week to 4 weeks and can be concluded
with a detailed report describing the development plan, the work carried out, the
results, the software and neurosoftware developed (with listings and permanent
archival diskette provided), and recommendations for future work.
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Introduction: What Is
Neurocomputing?

Neurocomputing is the technological discipline concerned with information pro-
cessing systems (for example, neural networks) that autonomously develop oper-
ational capabilities in adaptive response to an information environment. Neu-
rocomputing is a fundamentally new and different approach to information
processing. It is the first alternative to programmed computing, which has
dominated information processing for the last 45 years. This book provides
a graduate-level introduction to neurocomputing, including theory, implemen-
tation, and applications.

This chapter begins with an overview of neurocomputing. The structure
of the field of neurocomputing is then discussed, followed by a discussion of
the relationship between neurocomputing and neuroscience. The history of the
subject is then surveyed, and finally, a brief overview of the structure of the rest
of the book is presented.

1.1 Introduction

1.1.1 Overview of Neurocomputing

From the advent of the first useful electronic digital computer (ENIAC) in 1946
[23] until the late 1980s, essentially all information processing applications used
a single basic approach: programmed computing. Solving a problem using pro-
grammed computing involves devising an algorithm and/or a set of rules for
solving the problem and then correctly coding these in software (and making
necessary revisions and improvements).

Clearly, programmed computing can be used in only those cases where the
processing to be accomplished can be described in terms of a known procedure
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or a known set of rules. If the required algorithmic procedure and/or set of rules
are not known, then they must be developed — an undertaking that, in general,
has been found to be costly and time consuming. In fact, if the algorithm
required is not simple (which is frequently the case with the most desirable
capabilities), the development process may have to await a flash of insight (or
several flashes of insight). Obviously, such an innovation process cannot be
accurately planned or controlled. Even when the required algorithm or rule set
can be devised, the problem of software development still must be faced.

Because current computers operate on a totally logical basis, software must
be virtually perfect if it is to work. The exhaustive design, testing, and itera-
tive improvement that software development demands makes it a lengthy and
expensive process.

A new approach to information processing that does not require algorithm
or rule development and that often significantly reduces the quantity of soft-
ware that must be developed has recently become available. This approach,
called neurocomputing, allows, for some types of problems (typically in areas
such as sensor processing, pattern recognition, data analysis, and control), the
development of information processing capabilities for which the algorithms or
rules are not known (or where they might be known, but where the software
to implement them would be too expensive, time consuming, or inconvenient
to develop). For those information processing operations amenable to neuro-
computing implementation, the software that must be developed is typically
for relatively straightforward operations such as data file input and output, pe-
ripheral device interface, preprocessing, and postprocessing. The Computer
Aided Software Engineering (CASE) tools often used with neurocomputing sys-
tems can frequently be utilized to build these routine software modules in a
few hours. These properties make neurocomputing an interesting alternative to
programmed computing, at least in those areas where it is applicable.

Formally, neurocomputing is the technological discipline concerned with
parallel, distributed, adaptive information processing systems that develop in-
formation processing capabilities in response to exposure to an information
environment. The primary information processing structures of interest in neu-
rocomputing are neural networks (although other classes of adaptive informa-
tion processing structures are sometimes also considered, such as learning au-
tomata, genetic learning systems, data-adaptive content addressable memories,
simulated annealing systems, associative memories, and fuzzy learning systems).
The formal definition of a neural network follows.

B DEFINITION 1.1.1 A neural network is a parallel, distributed information pro-
cessing structure consisting of processing elements (which can possess a lo-
cal memory and can carry out localized information processing operations)
interconnected via unidirectional signal channels called connections. Each
processing element has a single output connection that branches (“fans out”)
into as many collateral connections as desired; each carries the same signal



1.1 Introduction 3

— the processing element output signal. The processing element output sig-
nal can be of any mathematical type desired. The information processing
that goes on within each processing element can be defined arbitrarily with
the restriction that it must be completely local; that is, it must depend only
on the current values of the input signals arriving at the processing element
via impinging connections and on values stored in the processing element’s
local memory. m

One might wonder why this particular type of Multiple Instruction Multiple
Data (MIMD) parallel processing architecture should be worthy of such concen-
trated attention (beyond the obvious fact that biological neuron networks seem
to be neural networks in the above sense). In particular, why not simply study
some of the more general MIMD architectures (such as dataflow architectures
{57]) which contain neural networks as a subclass? Surprisingly, no completely
satisfactory answer to this question is yet known. However, it seems very likely
to me that the neural network definition will someday be shown to be a particu-
larly good compromise that allows substantial information processing capability
while at the same time providing sufficient structure to allow the development of
efficient general-purpose implementations (methods for efficiently implementing
arbitrary general MIMD architectures are not known and may not exist). All we
can say for sure now is that the neural network definition does produce a class
of powerful and potentially useful information processing structures that lend
themselves to efficient implementation by general-purpose neurocomputers. It
is these consequences of the definition that we will discuss in this book.

To illustrate the nature of neural networks we shall describe briefly a clas-
sical neural network architecture known as the perceptron. Because it has been
largely superceded by more powerful neural networks (for example, some of
those discussed in Chapters 3, 4, 5, and 6), the perceptron is primarily of his-
torical interest, although it is still occasionally used.

The perceptron is a neural network that consists of one or more of the
processing elements shown in Figure 1.1 (which are themselves also referred
to individually as perceptrons). For simplicity, we shall concentrate on the
operation of a single perceptron processing element.

The goal of the perceptron is illustrated in Figure 1.2. Here we see two
classes of patterns (class 0 and class 1). A pattern is simply a point in n-
dimensional space (the coordinates of the point represent attributes or features
of the object to be classified, such as weight, height, density, or frequency).
In the case illustrated in Figure 1.2 (which is the situation of interest rela-
tive to the perceptron), the two classes can be separated from each other by
a simple linear hyperplane (in 2-dimensional space a hyperplane is a line, in
3-dimensional space it is an ordinary plane, and in n-dimensional space it is
an (n — 1)-dimensional flat surface). Classes that have this property are termed
linearly separable. The goal is to find a set of weights or adaptive coefficients
wy, W1,...,Ww, (Which, it turns out, determine a unique hyperplane — as will
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X0=1 X3 Xo s Xp

P
“Correct” output
(supplied during
training)

-~

n

1if Z w; X;ZO
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0if Z W,'X,'<0
i=0

Fig. 1.1. e The perceptron. The perceptron has an input consisting of an (n + 1)-
dimensional vector x = (xgp,X;,X2,...,Xs), Where xo is permanently set to 1 (this is
called a bias input). The output of the perceptron is 1 if the weighted input sum xpwp +
X\Wy + -+ XpWy 18 g}eater than or equal to zero; the output is O if this weighted input
sum is less than zero.

be discussed in Chapter 3) such that the output of the perceptron is 1 if the in-
put pattern vector (xi, x2,...,X,) belongs to class 1, and O if the pattern vector
belongs to class 0.

The weights are stored within the processing element and are automatically
modified by the processing element itself in accordance with the perceptron
learning law. This learning law operates during a training process where the
perceptron is shown a sequence of randomly selected x pattern vectors (one at
a time). Each time an x example is presented to the perceptron (as part of
a training trial), the system is also told to which class (0 or 1) the example
belongs. On each training trial, the learning law modifies the weight vector w in
accordance with the equation

wheW = wold (v — y/) X, (1.1)

where y is the correct class number of the input pattern x (which is supplied,
along with x, on each training trial), and )’ is the output of the perceptron. The
idea of this learning law is that, if the perceptron makes an error (y — ') in
its output, this error indicates a need to reorient the w hyperplane so that the
perceptron will tend not make an error on this particular x vector (or any other
vector near it) again. Note that the output error (y — y’) will be 0 if the output
of the perceptron is correct. In this situation the weight will not change. If the
output is wrong, then (y — ') will be either +1 or —1, and w will be modified
appropriately (so that the perceptron will do better in the future).

The perceptron was invented in 1957 by Frank Rosenblatt [199] (who also
wrote Principles of Neurodynamics, one of the two early books on neurocom-
puting [198] — the other being Automat und Mensch by Karl Steinbuch [216]).
Following his invention of the perceptron, Rosenblatt proved that, given linearly
separable classes, a perceptron will, in a finite number of training trials, develop



