I | PROGRAMMER'S HANDBOOK

Richard C. Vile, Jr.

PROGRAMS ‘AND PROGRAMMING TECHNIQUES
IN APPLE INTEGER BASIC, APPLESOFT BASIC,
PASCAL, AND 6502 ASSEMVBLY LANGUAGE

VERE VLR VEED.
vers

<
W
\) appl
PROGRAMMER'S HANDBOOK
=

Richard C. Vile, Jr. |

PROGRAMS AND PROGRAMMING TECHNIQUES
IN APPLE INTEGER BASIC, APPLESOFT BASIC,
PASCAL, AND 6502 ASSEMVBLY LANGUAGE

GRANADA
London Toronto Sydney New York

Granada Publishing Limited—Technical Books Division
Frogmore, St. Albans, Herts AL2 2NF

and

36 Golden Square, London WIR 4AH

515 Madison Avenue, New York, NY 10022, USA

117 York Street, Sydney, New South Wales 2000, Australia
100 Skyway Avenue, Rexdale, Ontario, Canada MO9W 3A6
61 Beach Road, Auckland, New Zealand

Copyright © 1982 by Prentice-Hall, Inc., Englewood Cliffs,
New Jersey 07632

ISBN 0-246-12027-4

First published in the United States of America 1982 by
Prentice-Hall, Inc.
First published in Great Britain 1983 by Granada Publishing Ltd.

Printed in the United States of America

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording or otherwise, without
the prior permission of the publishers.

RICHARD C. VILE, JR. is a senior software specialist for GemNet
Software Corporation in Ann Arbor, Michigan. Active in the computer
{ 1d since 1974, Mr. Vile has taught mathematics and computer science

at Eastern . _.chigan University, worked as a programmer, and vritten
articles for several leading computer magazines.

R

w

Vi

Preface:

How to Use This Book

This is a book of and about software. It emphasizes the use
of four programming languages available on the APPLE II
personal computer:

* Integer BASIC

* APPLESOFT BASIC

* APPLE (UCSD) Pascal

* APPLE (6502) Assembler

Itis a book of software since there are over 40 programs
whose source text have been printed in their entirety in the
book. These are complete programs, tested and ready to
use—such as you might buy in your local computer store.
They include such applications as:

* Graphics

Video—an animated TV test pattern.

Alphabetics—a collection of entertaining and educa-
tional programs for kids.

Dazzle—dynamic abstract low resolution graphics.
* Education

Duelling DO Loops—interactive fun with BASIC
FOR statements.

APPLE Trivia—several versions of a configurable
quiz program.

Utilities

BASIC subroutine loader.
Pascal Units—calendar, low-res graphics, etc.
An APPLESOFT Text Editor.

» Languages

Hex calculator interpreter.
Scanning programs.

Entertainment

The Fifteen Puzzle—interactive game and intelligent
program versions.

The Analogies Generator—nonsense phrases from the
computer.

Some programs appear in more than one version. This
allows comparison of the strengths and weaknesses of the
languages in use. All of the programs may be mod:fied
and this is in fact encouraged. That’s one of the reasons

ix

X/PREFACE

why we say the book is about software. In addition to the
programs themselves, there is ample commentary eon-
cerning the features and design of many of the programs.
There is discussion about the language constructs used in
the programs. Plus there are over 50 examples of what we
have chosen to call APPLE Programming Tips.

(.
@ A programmer is one who programs

Each programming tip is highlighted in the text by a
banner like the one above and a brief descriptive title, such
as “*A programmer is one who programs.’’ This saying
‘exemplifies the philosophy of the book. We believe that in
order to learn about software or programming, you must

engage in programming yourself.

<) Read other peoples’ programs

One excellent way to learn about programming is to read
other peoples’ programs. That is why we have included
complete and substantial programs. To get the most out of
the book, you should read and study the programs, as well
as mn them.

That is not to say that we don’t believe in the mechanics
of programming. This is not our aim in this particular
book. We will assume that you have learned or are learn-
ing about the languages from one of the many excellent
introductory texts on language rules and regulations that
are available. We hope to take you a step beyond those
tutorials, however, and show you how programs are con-
structed.

(Organize your programs for .
understanding

Since this book is for relative beginners to the art of
programming, yet wishes to present substantial examples

of real programs, the programs included here have been
written with the conscious assumption that people will
read them. Consequently, the keyword in their construc-
tion has been clarity. Techniques to make the programs
more efficient have been avoided in most cases, since that
would have inade them harder to understand. We hope
that most programs in this book can be read and under-
stood using a top-down approach. That is, by first absorb-
ing the higher level structure and then gradually working
down into the details. Most of the programs presented use
many subroutines or procedures which make this process
easier. ’

The book has been divided into four sections corres-
ponding to the four languages mentioned above. There is
some cross referencing of programs. For example, the
Amper-Letters program of Chapter 11 uses some assem-
bly language routines from Chapter 19. The APPLE
Trivia Quiz program is reincarnated in APPLESOFT and
Pascal after being introduced in Integer BASIC.

@ Explore!

At the end of most Chapters there is a section entitled
“‘Explorations.’’ In these sections, we present sugges-
tions for actual programming. These range from the trivial
to the extremely difficult. They give you your chance to
practice what we. have preached throughout the book.
They are called Explorations because of their somewhat
open-ended nature. We hope that they will lead you to
experiment with ideas and modifications of your own.
Experimenting with new ideas, modifying programs step
by step, trying out new techniques: all these activities will
lead you to a better understanding of programming and to
more enjoyment of your APPLE.
Happy programming and enjoy!!
Dick Vile

Contents

N STRING INTERPRETER, 22 4. APPLYING THE
Pr eface' IX FORMAT STRING INTERPRETER, 23

5. EXPLORATIONS, 23
APPLE Integer BASIC 1

INTRODUCING INTEGER, 1 @

@ Intelligent Programs 36
. 1. THE FIFTEEN PUZZLE, 36 2. AUTOMATING
Interactive Programs: THEFIFTEEN PUZZLE, 39 3. ABASIC THEORY OF
. FIFTEEN PUZZLE SOLUTION, 40
Using Menus 4 4. EXPLORATIONS, 43

1. EFFECTIVE USE OF THE APPLE I| SCREEN, 4
2. THE SKELETON OF A MENU-DRIVEN
PROGRAM, 6 3. CODING THE MENU-
DRIVER, 7 4. INTEGER BASIC CODING

STYLE,8 5. EXPLORATIONS, 11 @

APPLE DOS:

Low-Resolution Graphics 18 Using Files in Programs 56
1. REVIEW OF DOS USAGE, 56 2. EXEC

1. THE VIDEO PROGRAM, 18 2. DRAWING FILES, 58 3. DUELLING DO LOOPS, 60
FIGURESININTEGERBASIC, 19 3. THELOW-RES 4. EXPLORATIONS, 60

Using Monitor Routines 66
1. THE CALL STATEMENT AND PROGRAM
PORTABILITY, 66 2. THE WINDOW SHADES

PROGRAM, 68 3. USING INTERFACE
ROUTINES, 70 4. EXPLORATIONS, 70

APPLESOFT BASIC:
Features and Use 75

[v

APPLE DOS
and APPLESOFT 77

1. COMPARISON OF USAGE, 77 2. ERROR
HANDLING, 77 3. SIMPLE PROGRAMS, 78
4. APPLICATION: A SIMPLE TEXT EDITOR, 78
5. EXPLORATIONS, 80

(s

String Arrays 87

1. DECLARATION AND USE OF STRING
ARRAYS, 87 2. LANGUAGE
MANIPULATION, 87 3. RANDOM NUMBER

GENERATION, 90 4. USING THE STRING
FUNCTIONS, 91 5. EXPLORATIONS, 92

10
APPLESOFT Trivia 102

1. USE OF THE SCREEN, 102 2. APPLESOFT
PROGRAMMING STYLE, 103

vi

e KR A

APPLESOFT
Low-Resolution
Graphics Techniques 116

1. THE GIANT LETTERS SCREEN REVISITED, 116
2. THE AMPERSAND COMMAND AND A REVISED
GIANT LETTERS, 116 3. EXPLORATIONS, 118

APPLE Pascal: .
Features and Use 125

1. PROGRAM STRUCTURE, 125

2. USER-DEFINED TYPES, 126

3. DECLARATIONS, 127 4. STRUCTURED
STATEMENTS, 127 5. UCSD EXTENSIONS, 128
6. EXPLORATIONS, 128

Pascal Trivia Quiz 129
1. THE TRIVIA PROGRAM IN PASCAL, 129
2. INTRODUCTION TO SEQUENTIAL FILES, 132

3. STORING QUIZZES IN FILES, 133
4. EXPLORATIONS, 133

k=l

Interactive Programs:
Adding Intelligence 159

1. MORE FLEXIBLE USER INPUT, 159 2. THE
STRUCTURE OF SCANNING PROGRAMS, 160
3. SOME EXAMPLES OF TOKEN

EXTRACTION, 162 4. HANDLING RESERVED
WORDS, 163 5. A SKELETON SCANNER, 164
6. EXPLORATIONS, 165

T O P

U

Interpreters:
The Calc Minilanguage 171

1. THE CALC MINILANGUAGE, 171 2. A
SCANNER FOR CALC, 172 3. THE STRUCTURE
OF EXPRESSIONS, 173 4. PROCESSING

* EXPRESSIONS AND THE CALC

MINILANGUAGE, 174 5. THE CALC
INTERPRETER, 176 6. EXPLORATIONS, 178

Using Pascal Units 192

1. A VERY BRIEF REVIEW OF UNITS, 192

2. THE DIET GRAPH PROGRAM, 192
3. A LOW-RESOLUTION GRAPHICS UNIT, 193
4, EXPLORATIONS, 193

APPLE Assembler:
Features and Use 216

1. INTRODUCTION, 216 2. THE 6502
CPU, 217 3. ASSEMBLY LANGUAGE, 219
4. THE ROLE OF THE ASSEMBLER, 220

5. SELECTED BIBLIOGRAPHY OF 6502
ARTICLES, 222

Assembly-Language
Techniques 223

1. MORE ON CARRY AND BORROW, 223 2. SIX
TECHNIQUES THAT USE THE CARRY FLAG, 225
3. USING 6502 ADDRESSING MODES, 226

4. THE APPLE Il OUTPUT HOOK AND COUT
ROUTINE, 228 5. SENDING MESSAGES TO THE
APPLE 1l SCREEN, 229 6. EXPLORATIONS, 230

Ampersand Support
Routines 236

1. THE AMPERSAND COMMAND

REVISITED, 236 2. SOME USEFUL APPLESOFT
ROUTINES, 237 3. AMPER-GRAPHICS, 239

4. AMPER-LIST, 240 5. EXPLORATIONS, 241

=O)

Dazzling Programs 263

1. FOLLOW THE BOUNCING BALL, 263
2. APPLE DAZZLE, 263 3. IMPLEMENTING
DAZZLE, 264 4. EXPLORATIONS, 266

vii

(& -/

¢

Chapter

APPLE
Integer BASIC

In this chapter, we give a very brief summary of Integer
BASIC, indicating some of its desirable features and their
usefulness. This is not intended to supplant either AP-
PLE’s tutorial manual on the subject or any other tutorial
materials. We assume that the reader is familiar with some
dialect of BASIC, probably Integer BASIC, and do not
pretend that this is a beginner’s guide. Many of the points
we make in this section will be amplified upon in later
chapters.

INTRODUCING INTEGER

Integer BASIC was the first APPLE language after 6502
machine language. Folklore has it that Steve Wozniak
implemented the entire interpreter using only the mini-
assembler of the original Monitor ROM as a tool—truly
an impressive feat.

Integer BASIC is a somewhat stripped down version of

the BASIC language: it does not support floating-point

variables or functions, has limited string capabilities, pro-
vides no user-defined functions, and lacks multidirtién-
sional arrays. Nonetheless it is a useabid language and
provides some features not commonly found in many

implementations of BASIC: arbitrary length identifiers,
support for (low-resolution) color graphics, access to
game paddle inputs, memory-mapped display support,
the ability to CALL machine language routines, etc.

Playing Games

Integei BASIC provides enough features to allow interest-
ing games to be written. In particular it allows color
graphics displays to be produced in sixteen different col-
ars on the low-resolution graphics display. The program-
mer is given the ability to plot points, draw horizontal and
vertical lines, and to change colors. Of course, there are
statements to allow changing from text to graphics modes
and vice-versa.

Integer BASIC Graphics Commands

PLOT COLROW

HLIN COL1,COL2 AT ROW1
VLIN ROW1,ROW2 AT COL1
COLOR = N

GR

TEXT

8650023

2/APPLE Integer BASIC

These commands are pretty simple, ;yet comprehensive
enough to allow fairly sophisticated graphics to be pro-
duced. Some of these capabilities are demonstrated in
Chapters 3, 4, and 6.

In addition to the color graphics capabilities, Integer
BASIC programs have access to two or more game paddle
inputs via the built-in function PDL.

PDL(n)

returns the current reading of the nth game paddle, where
n is between O and 3. The standard APPLE comes
equipped with two paddles corresponding to n = 0 and
n = 1. Most Integer BASIC programs make do with these
two, although it is possible to add two more paddles to the
APPLE..

The APPLE II has a built-in speaker. This is not sup-

ported directly by a statement like PDL, but it is possible
to access the speaker using the PEEK or POKE functions.
The memory location numbered —16336 is “‘tied’’ to the
speaker in such a way that every time it is referenced as the
argument of a PEEK or a POKE, the speaker makes a tiny
click. Playing around with various combinations of such
references in loops, with delays in between will produce
various noises and tones. This is illustrated by the follow-
ing brief program. Try running it and twisting the PDL(1)
control back and forth very slowly. With some experi-
mentation, you will see why it has been dubbed the
“squeaky-door’” demo. See Listing 1.1 at the end of this
chapter.

Display Features

The APPLE Il computer provides a memory-mapped dis-
play. This means that an area of memory is dedicated to
storing the information that appears on the screen.
Whenever one of these memory locations is changed, the
difference is instantaneously visible on the screen. Integer
BASIC takes some advantage of this design by allowing
the cursor on the screen to be positioned to any desired
row and column before a PRINT statement is issued. This
allows a program to selectively update portions of the
screen without destroying other information on the re-
mainder of the screen. The cursor positioning statements
are: :

VTAB row
TAB col

These are taken full advantage of in the APPLE Trivia

quiz of Chapter 2, as well as in many other programs.
In addition to the VTAB and TAB commands, Integer

BASIC programs can take advantage of other features of

i b R ot SIS a5t e i ey

the display. In particular, the Monitor ROM routines are
used by the interpreter to do screen output. Certain
parameters which these routines make use of may be
directly controlled by the use of POKE statements. In
particular, the concept of a scrolling window is frequently
made use of in Integer BASIC programs. We deal with
this concept and its associated parameters in Chapter 2 as
well.

Coding Advantages of Integer BASIC

Integer BASIC offers some significant advantages over
many other versions of BASIC in writing clear and easily
understood programs. Probably the biggest of these ad-
vantages is its rules regarding identifiers.

1. Integer BASIC variable names may be as long or as
short as the programmer wishes.

2. Variable names may be used in place of line numbers in
GOTO and GOSUB statements.

The use of long variable names which may be chosen to
directly suggest the intended use of the variable in the
program has significant psychological advantages when
reading programs. Instead of having to remember, for
example, that variable S1 represents a score, the pro-
grammer may simply use SCORE as the name of the
variable.

The ability to give names to subroutines which the
program calls is another significant advantage both in
reading and understanding programs. Compare, for ex-
ample:

100 GOSUB 1000 100 GOSUB
INITIALIZE
105 GOSUB 9000 105 GOSUB
INTRODUCTION
110 GOSUB 5000 110 GOSUB
with PLAYGAME
120 GOSUB 8000 120 GOSUB
ASKREPEAT

125 IF A$="YES”
THEN 110
130 END

125 IF ANSWERS$=
“YES” THEN 110
130 END

To use Integer BASIC most effectively, a programmer
should take full advantage of these capabilities, choosing
names which are suggestive and which will lead to a better
understanding for those who will read the programmer’s
code—that includes the programmer her/himself as well.
We try very hard to practice what we preach in all the
Integer BASIC programs in this book.

LISTINGS
LISTING 1.1 SQUEAKY DOOR DEMO

SLIST
5 SPKR=—16336
10 X= PEEK (SPKR)+ PEEK (SPKR)

15 REM = === === =
16 REM = VARY THE FOLLOWING DELAY =
17 REM = [00OFP TO PRODUCE THE =
18 REM = SRUEAKY DOOR EFFECT. =
19 REM ======

20 FOR I=1 TO PDL (1): NEXT I
30 GOTO 10

Chapter

Interactive
Programs:
Using Menus

A large number of APPLE II programs take the form of
interactive dialogues with the user. A standard approach
to the user interface is the use of menus. In this chapter we
discuss techniques for effective, user-friendly interactive
programs. In the process, we present an example of a
menu-driven, interactive program, which illustrates many
of the techniques discussed.

1. EFFECTIVE USE
OF THE APPLE li SCREEN

The APPLE II features a memory-mapped display. This
means that a portion of the APPLE’s system memory is set
aside to hold the infor:nation which appears on the screen.
When a new value is stored into one of these locations, the
difference is instantaneous!y visible on the screen. As a
. consequence, portions of the display may be selectively
updated without affecting the rest.

Cursor Controls

The APPLE'’s text display holds 24 lines of 40 characters
each. A BASIC program displays text on the screen by the
use of PRINT statements. The output goes to the screen at
the “‘current’’ row and column position. This position is
remembered by BASIC as the program runs, and may be
modified by the use of the VTAB and TAB statements.

VTAB This statement positions the screen cursor at
the row whose number is the value of the expression
following VTAB:

VTAB 23

VTABI + 5

VTAB 2*] + 1

TAB This positions the screen cursor at the column
whose rumber is the value of the expression following
TAB:

TAB 39

TAB 3% + 2

The VTAB and TAB statements operate independently
of each other. In particular, the following sequence of
statements:

TAB 20

VTAB 15

TAB 10

will leave the cursor on row 15 and column 10. In some
systems, the fact that the cursor started at column 20 when
the TAB 10 statement was executed would cause the row
position to advance to 16. This is nor the case in APPLE
Integer BASIC.

The limits on TAB and VTAB are:

TAB: 1-40
VTAB: 1-24

Any attempts to go beyond these limits will earn you a
severe reprimand from the Integer BASIC Interpreter.
The production of pleasing and effective displays will rely
heavily on the use of TAB and VTAB. '

Monitor ROM Support Routines

Routines in the APPLE Monitor ROM or Autostart ROM
control the flow of ihformation to the screen. We will
make use of several of these on a regular basis—mainly to
erase parts of the screen. ROM routines are accessed via
the CALL statement:

CALL constant or CALL IDENTIFIER

For example, CALL -936 will cause the text screen to
be erased and the cursor to return to the upper left-hand
corner of the screen. The routines we shall rely on most
are summarized in Table 2.1. These routines can be quite
helpful in maintaining a neat screen appearance.

Highlighting—Use of Inverse Mode

The use of inverse video can also be quite effective in

Interactive Programs: Using Menus/5

display. The use of inverse video from Integer BASIC
takes on a slight aspect of ‘‘magic’’ in that it is supported
by means of a POKE statement. The memory location
numbered 50 is used in a special way in producing the
APPLE II text output. Depending on what value is stored
there, the characters output to the screen may be normal,
inverse, or blinking. Actually, it’s more complicated than
that, but we won’t go into it just here. All we need for now
is a way to turn inverse video on and off:

POKE 50,63 :REM SELECT INVERSE MODE
POKE 50,255 :REM SELECT NORMAL MODE

Thus, the short program:

10 CALL -936

20 VTAB 10: TAB 15

30 POKE 50,63: PRINT “INVERSE”;
40 POKE 50,255: PRINT “NORMAL"”
50 END

will clear the screen and print the word INVERSE in
inverse mode on line 10 of the screen followed by the
word NORMAL in normal mode.

The Scrolling Window

The APPLE II ROM routines support the idea of a scroll-
ing window for the display screen. How all the various
screen support goodies interact with this concept is a little
tedious, so we will try to introduce it a little at a time,
coming back to it again in future sections and chapters.

The idea of a window is simple: it is a rectangular
portion of the display screen which may be thought of as a
subscreen within the entire screen. This is illustrated in
Figure 2.1.

A window may be specified by naming four pieces of
information:

Window left
Window width

the leftmost column of the window
the width in columns of the win-

highlighting or emphasizing various portions of a screen dow

TABLE 2.1

Machine Language ROM Address

Routine Hex Decimal Function

HOME FC58 -936 Clear the text screen and home
the cursor

CLREOL FC9C -868 Clear the screen from the current
cursor position to the end of the line

CLREOP FC42 -958 Clear the screen from the current

cursor position to the end of the
screen

window left

window 4
top
window
bottom
f—————————— window width———»{
FIGURE 2.1 A Screen Window
Window top the topmost row in the window

Window bottom the bottommost row in the window

In APPLE’s implementation of the scrolling window,
these four items arc remembered in specific APPLE RAM
locations within the first 256 memory locations—the so-
called *'Page Zero’’ locations. Integer BASIC allows the
programmer explicitly to store values into any RAM loca-
tions desired using the POKE statement. This means that
the whereabouts of the window is under the BASIC pro-
grammer’s control. The magic locations are as follows:

Window left 20 (hex) or 32 (decimal)
Window width 21 (hex) or 33 (decimal)
Window top 22 (hex) or 34 (decimal)
Window bottom 23 (hex) or 35 (decimal)

Once the window parameters have been set, scrolling
will be limited to the text inside the window. Put another
way, any text outside the window will not budge when
scrolling takes place.

Scrolling

When a line of text is printed at the bottom of the window,
all lines of text move up one. The top line disappears out
of the window and when the bottom line moves up, it
makes room for more text to appear where it used to be.

The window parameters do not control al/ placement of
text, however. VTAB statements work regardless of the
window top and window bottom. TAB statements are
made relative to window left and they do respect the
window width.

Try the following prograrm:

1 VTAB 10: TAB 10:PRINT “*#*resxrxunsss
2 FOR I=1 TO 10:TAB 10:PRINT
o L *":NEXT 1
3 TAB 10: PR'NT IRERRE DR Rk
10 POKE 32,10:POKE 33,10
12 POKE 34,10:POKE 35,20
25 VTAB 1:TAB 5:PRINT “LINE 1 COL 5"
26 VTAB 10:TAB 25:PRINT “H}I”
27 VTAB 23:TAB 5:PRINT “23,5”

This demonstrates two facts. VTAB allows you to
violate the vertical extent of the window. TAB does not
allow you to violate the horizontal. Why all this works the
way it does is a consequence of the way the Monitor ROM
routines were written. We shall not go into ail the details
here.

2. THE SKELETON
OF A MENU-DRIVEN PRC SRAM

Before plunging into a full-length sample program, we
shall discuss the idea of a skeleton program: an outline
which will serve to guide the development of many differ-
ent real programs. In order to develop the skeleton pro-
gram, we need to discuss menu programs in general.

What is a Menu?

A menu is a list of choices, presented to the user of a
program, usually on the video display. The user selects a
menu item for the program to execute and the program
transfers control to the appropriate section. A choice is
made by pressing a key which corresponds to one of the
menu selections—-this could be a number or letter oreven
a special character—that depends on how the menu is
presented.

Choosing a Personal Menu Style

Menu displays may range from the simple to the ornate.
There is considerable scope hete for creativity and origi-
nal application of the basic screen manipulation tools.
The simplest presentation is a numbered or lettered list
of short titles or phrases, each of which describes one of
the options of the program. The program accepts the
user’s choice by reading a number or letter.
Information about what the program does or about
individuat choices in the menu may adorn the screen in
addition to the bare text of the choices themselves.

3. CODING THE MENU-DRIVER

There are two basic facets to a menu-driver:

* Presenting the list of choices.
 Determining the user’s choice and invoking the ap-
propriate section of support in the program.

Presenting the list of choices is pretty much a matter of
personal style. You will get to see one approach in the
Trivia program later on. The only constraint we follow is
that all the choices should fit on a single screen. If this
constraint is violated, then your program is a candidate for
*‘quick weight loss’’!

@ Menu choices

Most menus are presented as a numbered oriettered list of
choices. The program user may respond to the menu by
one or two simple keystrokes. To convert this to a number
which may be used to ‘‘vector”’ the program to the appro-
priate supporting code, the Integer BASIC function ASC
may be used. We give the details following the presenta-
tion of the sample program.

@ Use skeleton programs

A program skeleton is a general outline from which may
grow many different programs of the same nature. The
skeleton may be nothing more than a standard outline
which dictates what functional pieces will fit where. It
may also contain a few.or many standard subroutines
which are used in many different programs. Examples of
this in the APPLE Trivia program are WAIT and GET.

Figure 2.2 illustrates one possible bare-bones program
skeleton for menu-driven programs. It indicates seven
functional subdivisions of the program and a suggested
range of line numbers to use for each.

The distribution of the line numbers is flexible and
depends on the amount of program to be devoted to each
subdivision. The program of Listing 2.1 is a good ex-
ample of a medium-size, interactive program, written in
Integer BASIC. It provides a menu with a choice of
several quizzes:

(A) CHESS HISTORY
(B) OLYMPICS
(C) BOOKS AND AUTHORS

(D) COMPUTER LORE
(E) GENERAL INFORMATION

0-9 Banner: Title and Author

10 - 99 Declara‘ions

100 - 999 Meny

10003999 Susb‘:gz?i:es

4000 — 29999 Subject Matter
Subroutines

31000 — 31999 Initializations

32000 — 32999 Introduction

FIGURE 2.2 The Skeleton of a Menu Driven Program

The section on general information has been intention-
ally left blank—you may fill it in with your own trivia
questions.

The program’s introduction
quizzes of the following types:
1. Matching
2. Multiple Choice
3. Short Answer
4. True or False

licates that there are

The only type which is actually implemented by the
program so far is matching. You will be given the chance
to try your hand at implementing one or more of the others
in the Explorations section at the end of this chapter.

Matching is relatively simple to do, since there can be
no doubt about the correctness of the answers. In our case,
the key to this may be found in the subroutine which
scores the quiz (MARK = 1550):

JF ANSWERS (ORDER(I)) = | THEN RIGHT =
RIGHT + 1

What this means may be explained briefly as follows:

The order in which the answers are displayed on the
screen is captured in the array ORDER. Thus, ORDER(l)
contains the answer to the Ith question and is printed in
the ORDER(i)th position. Therefore, the ANSWER to the
ORDER()th question is |. Confused? Think about it for a
while—then if you are still confused, draw a picture or
two of passible orders.

(For more info, study the following subroutines: MIXUP
= 1050, SHOWANSWERS = 1100, and GETRE-
SPONSE = 1150).

~ Multiple choice and true or false should also be fairly
easy to implement, since the answers are exact. On the
other hand, short answer quizzes must be imperfect at

8/Interactive Programs: Using Menus

best—the person using the program is free to enter many
different s~ort answers, all of which may in some sense be
correct. The program must not only check for the *‘pure’’
answer, it must judge whether a given answer should be
considered a match for the pure answer. In general, large
computer-based instruction systems contain considerable
amounts of intelligence aimed at the resolution of this
problem.

Study the APPLE Trivia program, shown in listing 2.1,
to see what you can discover for yourself. Then read the
next section for a number of explanatory programming
tips about it. Figure 2.3 shows a diagram with all the
subroutines of APPLE Trivia and how they depend on or
are called from one another. Such a diagram is a good
reference to have when studying a program of more than
one or two pages in length.

i-99

100 Y

D

TRIVIA

4000-8000 y

SUBJECT {TYPE)

4. INTEGER BASIC CODING STYLE

There are a number of practices which can make your life
considerably easier when using Integer BASIC. Consis-
tently applying these techniques should lead to programs
which are easier to read and understand. This becomes
significant when someone besides the original author at-
tempts to modify and extend the program, or when the
original programmer comes back to the program after a
long absence.

In this section we give a number of programming tips
which explain some of the programming practices (and in
some case programming tricks) which have been used in
coding the APPLE Trivia program.

2100

C POSITION (G

1000 1050 1150 1100 1200 1550
(ALPHABET ‘ Mixup GETRESPONSES GHOWANSWE@ ANSWEROUTLIN9 MARK)
1300 /2000 125(:\ 1350 1400
)

‘ CLASSIFY)

AHEAD) BACK)

1500
CONVERT

FIGURE 2.3 Subroutine Call Graph for APPLE Trivia

ERASEBLOT

1500
CONVERT

1450

