' C Made Easy

Herbert Schildt

001235

C Made Easy

Osborne McGraw-Hill
Berkeley, California

Published by

Osborne McGraw-Hill
2600 Tenth Street
Berkeley, California 94710
U.S.A.

For information on translations and book distributors outside of the U.S.A.,
please write to Osborne MeGraw-Hill at the above address.

C MADE EASY

Copyright o 1985 by McGraw-Hill, Inc. All rights reserved. Printed in the United States of
America. Except as permitted under the Copyright Act of 1976, no part of this publication may
be reproduced or distributed in any form or by any means, or stored in a data base or retrieval
system, without the prior written permission of the publisher, with the exception that the pro-
gram listings may be entered, stored, ind executed in a computer system, but they may not be
reproduced for publication. -

1284567890 DODO 898765 .
ISBN 0-07-881178-3

Jon Erickson, Acquisitions Editor ’
Lorraine Aochi, Technical Editor)
Raymond Lauzzana, Technical Reviewer
Ted Gartner, Copy Editor
Judy Wohlfrom, Text Design
Deborali Wilson, Composition

Yashi Okita, Cover Design

-

INTRODUCTION

The purpose of this book is to teach you the C programming language.
Becausé programming is learned best by doing, it is strongly recommended
that you have access to a C compiler. There are several available for most
microcomputers, including excellent ones for the IBM PC and compatibles.
The examples presented in the book will compile correctly and without. -
errors on virtually any C compiler. However, minor variances can occur
among different compilers, so it is best to check your user manual first.
This book assumes that you have some knowledge of programming. You
should understand the general concepts of variables, assignment statements,
and loops. Don’t worry, your programming experience need not be extensive.
Because BASIC is generally included with the computer when you pur-
chase it, you are probably acquainted with it. BASIC has become a common
language for program examples because it is so widely known. Expecially in
the earlier chapters of this book, BASIC and C examples will be used side by
side to help you better understand aspects of the C language. Sometimes,
seeing a statement written in a language that you are learning is worth more

x C Made Easy

than pages of explanation. However, knowledge of BASIC is not required.
Even if you don’t know BASIC, this book will still be excellent for learning
the C programming language.

If you have not yet purchased a compiler, it is strongly recommended that
you buy one that is UNIX-compatible, because the function library that
comes with it will be similar to the one deseribed in this book.

In the early examples, data will be input to programs using either the,
getchar() function, which is found with most compilers, or the getnum()
function, which is developed in the text as an easy way to input detimal
numbers. ’

The examples in this book were compiled and run using the Aztee C com-
piler for the IBM PC. The examples will also compile and run using the
SuperSoft C compiler, with the exception that the floating-point examples
may need to be changed slighty to accommodate differences in the SuperSoft |
implementation. In general, any version 7, UNIX-compatible compiler will
compile and run the programs in this book.

NV OOV E WN -

CONTENTS

Introduction
Introducing C
General Overview of C

Variables, Constants, Operators,
And Expressions

Program Control Statements
Functaol- in Vetall

Input, Mt and Disk Flles
Pointers :
Arrays

Structures, Unions, and User-Defined
Types

ix

25

L

10

@ >

Writing a C Program
Common Programming Errors

C Summary
Common C Library Functions
Index

227
249

265
273
287

Introducing C
CHAPTER 1

C is often called a middle-level computer language. Middle-level does not
have a negative meaning: it does not mean that C is less powerful, harder to
use, or less developed than a high-level language such as BASIC or Pascal;
nor does it mean that C is similar to a low-level language, such as assembly
language (often’called assembler), which is simply a symbolic representation
of the actual machine code a computer can read. C is a middle-level language
because it combines elements of a high-level language with the functionalism
of assembler. Table 1-1 shows the levels of various computer languages,
including C. .

A middle-level language gives programmers a minimal set of control and
data-manipulation statements that they can use to define high-level con-

structs. In contrast, a high-level language is designed to try to give pro- . .

grammers everything ‘they could possibly want already built into the

language. A low-level language forces programmers to define all program
functions directly because nothing is built-in. One approach is not inherently
better than the other; each has its speeific application. Middle-level lan-
guages are sometimes thought of as building-block languages because the

2 C Made Easy

Table 1-1. Levels of Computer Languages

High Middle Low
Level Level Level
Ada C Assembler
BASIC FORTH

COBOL
FORTRAN
Pascal

programmer first creates the routines to perform all the program’s neces-
sary functions and then puts them together.

C allows —indeed needs —the programmer to define routines to perform
high-level commands. These routines are called functions and are very
important in the C language. You can easily tailor a library of C functions to
perform tasks that are carried out by your program. In this sense, you can
personalize C to fit your needs.

As a middle-level language C manipulates the bits, bytes, and addresses
the computer functions with. Unlike BASIC, a high-level language that can
operate directly on strings of characters to perform a multitude of string
functions, C can operate directly on characters..In BASIC, there are built-in
statements to read and write disk files. In C, these procedures are performed
by functions that are not part of the C language proper, but are provided in
the C standard library. These functions are special routines written in C that
perform these operations. For example, the PRINT statement in BASIC has
no direct parallel in C. However, there is a function called printf () in your C
compiler’s standard function library that the manufacturer provided.

C does have its benefits. It has very few statements to remember —only 28
keywords. (The IBM PC version of BASIC has 159.) This means that C com-

. pilers can be written reasonably easily, so there is generally one available for
your machine. Since C operates on the same data types as the computer, the
code output from a G compiler is efficient and fast. C can be used in place of
assembler for most {asks.

C code is very portable. Portability means software written for one type of
computer can be adapted to another type. For example, if a program written
for an Apple II+ can be easily moved to an IBM PC, that program is porta- .

1: Introducing C 3

" ble. Portability is important if you plan to use a new computer with’ a dlffer-
ent processor. Most application programs will only need to be reecompiled
with a C compiler written for the new processor. This can save countless
hours and dollars.

. Uses of C

C was first used for system programming. System programming refers to a
class of programs that either are part of or work closely with the operating
system of the computer. System programs make the computer capable of
performing useful work. These are examples of system programs that are
often written in Ci

- Operating systems . Language compilers
. Assemblers o Text editors

« Print spoolers + Network drivers

. Modem programs) ~+ Data bases

. Language interpretei's 'b . Utilities '

There are several reasons why C is used for system programming. Sys-
tem programs often must run very quickly. Programs compiled by C compil-
ers can run almost as fast as those written in assembler. In the past, most
system software had to be written in assembly language because none of the
available computer languages could create programs that ran fast enough.
Writing in assembly language is hard, tedious work. Since C code can be
written more quickly than assembly code, using C reduces costs tremendously.

Another reason that C is frequently used for system programming is that
it is a programmer’s language. Professional programmers seem to be
attracted to C because it lacks restrictions and easily manipulates bits, bytes,
and addresses. The system programmer needs C’s direct control of the I/0
and memory management functions, C also allows a program to reflect the
personality of the programmer.

Because programmers like to program in C, it has in recent years also
been used as a general-purpose programming language. C is very readable.
Once you are familiar with C, you can follow the precise flow and logic of a

4 C Made Easy

program. and easily verify the general operation of subroutines. C program
listings look clear; in contrast, a language like BASIC looks cluttered and
confusing. Perhaps the best reason that C has become a general-purpose lan-
guage is that it is simply fun to use. 2

C as
A Structured

Language

C is a structured language, as are Ada and Pascal. BASIC, COBOL; and
FORTRAN are nonstructured languages. The most distinguishing feature of
a structured language is that it uses blocks. A block is a set of statements that
are logically connected. For example, imagine an IF statement that, if suc-
cessful, will execute five discrete statements. If these statements can be
grouped together and referenced easily, they form a block. '
A structured language gives you a variety of programming possibilities.
- It supports the concept of subroutines with local variables. A local varsable is
simply a variable that is known only to the subroutine in which it is defined.
A structured lang‘uage also supports several loop constructs, such as the
while, do-while, and for constructs. (The use of the goto is either prohibited
- or discouraged and is not the common form of program control in the same
way it is in, BASIC or FORTRAN.) A structured language allows separately
compiled subroutines to be used without being in the program proper. This
means that you can create a subroutine library of useful, tested functions
that can be accessed by any program you write. A structured language
allows ¥ou to indent statements and does not require a strict field concept as.
in FORTRAN. - ‘
. Structured languages tend to be more modern, while the nonstructured .
* are older. In fact, a characteristic of an old computer language is that it is
not structured. Because of their clarity, structured languages are not only
easier to program in but also much easier to maintain. ’
Although you may be able to think of nonstructured languages that still
satisfy the requirements of a structured language (such as advanced
BASICs), a structured language is based on the compartmentalization of
function and data: that is, the reduction of each task to its own subroutine or

4

1: Introducing C 5

\

Block of code. As you learn the C programming language, the difference
between a structured and nonstructured language will become quite clear.

Interpreters
Versus Comprlers

The terms interpreter and compiler refer to how a program is executed. In
theory any\brogramming language can be either compiled or interpreted,
but some languages are usually executed one way or the other. However, the
way a program is executed is not defined by the language in which it is
written. Interpreters and compilers are simply sophisticated programs that
operate on your program source code. Source code is the program text that
you write.

An interpreter reads the source code of your program one line at a time
and performs the specific instructions contained in that line. A compiler
reads the entire program and converts it into object code, which is a transla-
tion of the program source code into a form that can be directly executed by
the computer. Object code is also referred to as binary code or machine code.
Once the program is compiled, a line of source code is no longer meaningful
to the execution of your program. -

For example, BASIC is generally interpreted and C is almost always com-
piled. An interpreter must be present each time you run your program. In
BASIC, you have to execute the BASIC interpreter first, load your program,
and then type RUN each time you want to use the program. A compiler, on
the other hand, converts your program into object code that can be directly
executed by the computer. Because the compiler translates the program one
time, all you need do in C is execute your program directly, generally by
typing its name.)

* Compiled programs run much faster than interpreted ones. However, the
compiling process itself does take more time. But this is easily offset by the
time you save while using the program. The only time this is not true is if
your program is very short —say, less than 50 lines—and does not use any
loops. :

In addition to the advantages of speed, compilers protect your source code
from theft and unauthorized tampering. Compiled code bears no resem-

6 C Made Easy

blance to source code, and this is the reason compilers are used almost
exclusively by commercial software houses. B

Two terms you will see often in this book and in-your C compiler manual
are comptle time and run time. Compile time refers to the events that occur
during the compilation process. Run time refers to the events that occur
while the program is actually executing. Unfortunately, you will often see
them used in connection with the word error, as in compile-time errors and
run-time errors.

&y

General
Overview of C

CHAPTER 2

Before learning any specific information about C, you should see what a C
program looks like compared to its BASIC equivalent. This chapter will go
over C fundamentals; the later chapters will thoroughly éxplain all aspects of
the C programming language.

Figure 2-1 gives the first program beginners usually write in C or
BASIC. The program simply prints the word HELLO on the computer’s
sereen followed by a carriage return/line feed combination.

Functions in C

The C language is based on the concept cf building blocks. The building
blocks are called functions. A C program is a collection of one or more func-.
tions. To write a program, you first create functions and then put them
together.

8 C Made Easy

main() .

{ 10 PRINT "HELLO“
printf("HELLO\nR"); 20 END

} X, .

Figure 2-1. C version and BASIC version of a program that prints HELLO

A function is a subroutine that contains one or more C statements and
performs one or more tasks. In well-written C code, each function performs
only one task. Each function has a name and a list of arguments that the
function will receive. In general, you can give a function whatever name you
please, with the exception of main, which is reserved for the function that
begins program execution.

When denoting functions, this book uses a convention that has become
standard when writing about C: a function will have parentheses after the
function name. For example, if a function’s name is mayx, it would be written
as max(). This notation will help distinguish variable names from function
names. > ' :

In the HELLO program of Figure 2-1 both main() and printf() are
functions. As stated earlier, main() is the first function executed when your
program begins to run. The function printf(), not & part of the C language
proper, is a subroutine written in C. Subroutines such as this are usually
written by the developer of the compiler and are a part of the standard C
library. The printf() function causes its argument to be printed on the
screen of the computer. In the HELLO program, the argument is the string
in parentheses, “HELLQ \n”. The \n is the symbol C uses to denote a new
line; that is, a carriage return/line feed combination.

The General Form of
C Functions

The HELLO program introduces the general form of a C function. The pro-
gram starts with main(). Then an opening brace signifies the beginning of

2: General Overview of C 9

the function followed by any statements that make up the function. In this
program, the only statement is printf(). The closing brace signals the end of
a function. Here it also marks the end of the program. The general form of a
function is :

Sunction _name(argument list)
argument __list declaration
{ opening brace begms the body of the function

\

[Son

body of the function
N

} closing brace ends the function

As you can see, the first thing a function needs is the name. Inside the
parentheses following the function name is the list of arguments. Imme-
diately following on the next line is the argument list declaration, which tells
the compiler what type of variable to expect. Next, braces surround the body
of the funetion. The body of the funetion'is composed of the C statements that
define what the function does. C does have an explicit return statement that .
forces a return from a function. Since no explicit return is encountered, the
function automatically stops execution and returns when it reaches the final
brace. This differs from the BASIC GOSUB-RETURN combination because
BASIC requires the RETURN to know when to return from a subroutine.

]

The main() Function

The main() function is special because it is the first function called when
your program executes. It signifies the beginning of your program Unlike a
. program in BASIC, which begins at the lowest line number or the * p” of
the program, a C program begins with a call to the main() function. The
main() function can be anywhere in your program, although it is generally
the first function for the sake of clarity. There must be a main() somewhere «
in your pragram so the C compiler can determine where to start execution.

The main() function is just like every other C function, except that the
closing brace of mafn() signals the end of the program. When this brace is
reached, the program exits to the operating system.

There can only be one main() in a program. If there were more than one,
your program would not know where to begin execution. Most compilers will
catch an error like this before you ever reach the execution stage.

10 C Made Easy

__ Function Arguments

In the HELLO program, the function printf() has one argument: the string
‘that will be printed on the computer screen. Functions in C can have from
"zero to several arguments. (The upper limit is determined by the compiler
you are using.) An argument is a value that is passed into a funection. When a
function is defined, variables that will receive argument values must also
be declared. These are called the formal parameters of the function. For
example, the following function will return the product of the two integer
arguments. The return statement transmits the product back to the calling
routine.

mul(x,y) /* mul function =/
int x,y; /* here x and y are declared
to be integer variables «/
<
return(x*y); /* gives the product of the
two arguments x/
3 .

Each time mul() is called, it will multiply the values of x and y.
Remember, however, that x and y are simply the function’s operational vari-
ables that receive the values you assign when calling the function.

Figure 2-2 presents a short program that uses the mul() function. This
program will print two numbers on the screen: 2 and 2340. The variables X,
¥, j, and k are not modified by the call to the mul() function. In fact, x and y
in main() have no relationship to x and y in mul().

The mul() function will multiply the values of both x and y as well as j
and k. When you call a function, the arguments may be either constants, as
in the HELLO program, or variables, as in the mul() example. When you
created the function mul() with two arguments, you declared the argument

- variables to be x and y. These are the formal parameters of the function;
they hold the information that you pass in when calling the function. C copies
the value of the constant or variable used as a function argument into the
variable that the function has declared in its list of arguments. Unlike some
other computer languages, C does not copy any information back into the
function arguments. _

In C functions, arguments are always separated by commas. In this book,
the term argument list will refer to comma-separated arguments. The argu-
ment list for mul() is x,y.)

T

