K ESAITE AR A gl
C++ How to Program, Fourth Edition

e

Web P[rc@[r@mmmﬁm)

M@[bﬂ@@%@[?ﬂ@ﬁnﬁ@@ﬂ with
Design UM

)‘

(ljt

with C@J

A e '
® 7 I % & A& A3
Publishing House of Electronics Industry
http://www.phei.com.cn

ANSI/ISO STANDARD C++
CONTROL STRUCTURES
FUNCTIONS/ARRAYS
POINTERS/STRINGS
VECTOR/STRING OBJECTS
CLASSES/DATA ABSTRACTION
OPERATOR OVERLOADING
INHERITANCE/POLYMORPHISM
VIRTUAL FUNCTIONS
RUN-TIME TYPE INFORMATION
STANDARD STREAM I/O
TEMPLATES/STL

EXCEPTION HANDLING
FiILES/DATA STRUCTURES
BITS/CHARACTERS
NAMESPACES

INTERNET/WEB RESOURCES

UML OOD CASE STUDY
Use CASeE DIAGRAMS
CLAss DIAGRAMS
OBJECT DIAGRAMS

B "ASSOCIATION
COMPOSITION
STATECHART DIAGRAMS
AcTiviTY DIAGRAMS
SEQUENCE DIAGRAMS
COLLABORATION DIAGRAMS

DEITEL
[i] Deitel %

Deitel

ESMTENH E=HM R

C++ KREHIE
(SPER) (AXH)

C++ How to Program
Fourth Edition

H. M Deitel

Deitel & Associates, Inc.

P. J. Deitel

Deitel & Associates, Inc.

%

T F IF & AL
Publishing House of Electronics Industry
jtst - BEUING

mEE T

ABHEH Deitel —KEEXEREHM T HM AR, MITNEREL, FELHEREELKFWIEEHR
e ABR—AC+HENFENRFHE, RENE I EARE S E SRR ST, 4800
T AR, MR RE L R AT RE LA OL. EE BT KBAUREIRRR, EARM THA UML#T
H X R, SIA TR CCIM Web B FITF A, FH HR BN E QIR ESCH A8 Cr+ REHRT . AFTigM
RN FORIERIE R 2w, I EAEM SR, RS WA RBRARINEE ¥ B W L hrER
Me e, LA EESRICERERE,

ABAEN B FBRARL T L RIZE T EM M Co+ REBEH, QRREFOTARET C++ BIFFTEK
ERBHGHRL.

English reprint Copyright © 2005 by PEARSON EDUCATION ASIA LIMITED and Publishing House of Electronics
Industry.

C++ How to Program, Fourth Edition, ISBN: 0130384747 by H. M Deitel, P. J. Deitel. Copyright © 2003.

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall.

This edition is authorized for sale only in the People’s Republic of China (excluding the Special Administrative Region of
Hong Kong and Macau).

A% 4 SRS EN AR E F Tk e AL # Pearson Education 3542 20 8F H R 91 A FRA Bl A1 AR . R4 AR & TG
BHEFA], R R BIP R A BRE MRS

A 451 WA Pearson Education $54 #(AR IBOGB hFR %, EAREE R SHE.

R A S AREEICS EF: 01-2005-3589
BERERSED (CIP) B

Ct+ R2EHR = C++ How to Program: %5 4 R/ (3£) BAF/K (Deitel, H. M.) &,
Jbst: B Lk AR, 2005.9

(EIMTEIEEEM RS

ISBN 7-121-01759-8

[.C. I.& .. . CiE5 - Bt - B%¥R - 86 - %3 V.TP312
of [H b A [E 545 CIP BB (2005) %5 1062115

EgE: B/
Bl R JbaRAAFAEENRIT
HRRAAT: BF DR
R THER 17335 HR4%. 100036
%2 8. BHFERIE
bix ZA: 787 x 980 1/16 Engk:. 87.75 FH: 1966 TF
Ep . 2005 4E9 A% 1 IKRETH]
% #r: 128.007C (HHER 1K)

UM F Dol MG S5, I SR R, EREWE RS Rk S REERR, S ARG R, KA
Hii%. (010) 68279077, FREILVFE KB E is@pheicom.cn, ¥ERRFFER H R B4 ZE dbqq@phei.com.cn,

Preface

Welcome to ANSI/ISO Standard C++! At Deitel & Associates, we write college-level pro-
gramming-language textbooks and professional books and work hard to keep our published
books up-to-date with a steady flow of new editions. Writing C++ How to Program,
Fourth Edition, (4/e for short), was a joy. This book and its support materials have every-
thing instructors and students need for an informative, interesting, challenging and enter-
taining C++ educational experience. As the book goes to publication, it is compliant with
the latest version of the ANSI/ISO C++ Standard (one of the most important worldwide
standards for the computing community) and with object-oriented design using the latest
version of the UML (Unified Modeling Language) from the Object Management Group
(OMG). We tuned the writing, the pedagogy, our coding style, the book’s ancillary package
and even added a substantial treatment of developing Internet- and Web-based applica-
tions. We have added a comprehensive Tour of the Book section to Chapter 1. This will
help instructors, students and professionals get a sense of the rich coverage the book pro-
vides of C++ object-oriented programming, object-oriented design with the UML and ge-
neric programming. If you are evaluating the book, please read the Tour of the Book now
in pages 44-56.

Whether you are an instructor, a student, an experienced professional or a novice pro-
grammer, this book has much to offer. C++ is a world-class programming language for
developing industrial-strength, high-performance computer appllcatlom We carefully
audited the manuscript against the ANSI/ISO C++ standard document,! which defines
C++, and we were privileged to have as a reviewer Steve Clamage of Sun Microsystems
who heads the ANSI J16 Committee responsible for evolving the C++ standard. As a result,
the programs you create by studying this text should port easily to any ANSI/ISO-com-
pliant compiler.

1. An electronic PDF copy of the C++ standard document, number ISO-IEC 14882-1998, is avail-
able for $18 at webstore.ansi.org/ansidocstore/default.asp; a paper copy is
available from this site for $175.

.29 .

Preface

In this Preface, we overview C++ How to Program, 4/¢’s comprehensive suite of edu-
cational materials that help instructors maximize their students’ C++ learning experience.
We explain conventions we use, such as syntax coloring the code examples, “code
washing” and highlighting important code segments to help focus students’ attention on the
key concepts introduced in each chapter. We overview the new features of C++ How to
Program, 4/e, including our early treatment of arrays and strings as objects, an enhanced
treatment of object-oriented programming, Web-application development with CGI, the
enhanced elevator-simulation object-oriented design (OOD) case study with the UML, and
the extensive use of UML diagrams that have been upgraded to UML version 1.4 standards.

Prentice Hall has bundled Microsoft’s Visual C+ +® 6 Introductory Edition software
with the text and offers a separate value-pack containing C++ How to Program, 4/e, with
Metrowerks CodeWarrior for the Macintosh and Windows. We list several compilers that
are available on the Web free for download. To further support novice programmers, we
offer six of our new DIVE-INTO Series publications that are available free for download
at www.deitel .com These materials explain how to compile, execute and debug C++
programs using various popular C++ development environments.

We overview the complete package of ancillary materials available to instructors and
students using C++ How to Program, 4/e. These include an Instructor’s Resource CD with
solutions to the book’s chapter exercises and a Test-Item File with hundreds of multiple-
choice questions and answers. Additional instructor resources are available at the book’s
Companion Web Site (www. prenhall com/deitel), which includes a Syllabus
Manager and customizable PowerPoint® Lecture Notes. Numerous support materials are
available for students at the Companion Web Site, as well. For instructors who want to hold
closed-lab sessions (or highly structured homework assignments), we provide the optional,
for-sale manual, C++ in the Lab. This publication includes carefully constructed Prelab
Activities, Lab Exercises and Postlab Activities.

This Preface also discusses The C++ Multimedia Cyber Classroom, 4/e, an interac-
tive, multimedia CD-based version of the book. This learning aid provides audio “‘walk-
throughs™ of programs, animations of programs executing and hundreds of exercises and
solutions. We describe how to order both the Cyber Classroom and The Complete C++
Training Course, 4/e, boxed product, which contains the Cyber Classroom and the text-
book.

We discuss several DEITEL e-learning initiatives, including an explanation of Deitel
content available for the Blackboard, CourseCompass and WebCT Course Management Sys-
tems, each of which supports C++ How to Program, 4/e. Premium CourseCompass, which
offers enhanced Deitel content based on The C++ Multimedia Cyber Classroom, 4/e, will be
available in January 2003.

C++ How to Program, 4/e, was reviewed by 52 distinguished academics and industry
professionals; we list their names and affiliations so you can get a sense of how carefully
this book was scrutinized. The Preface concludes with information about the authors and
about Deitel & Associates, Inc. As you read this book, if you have any questions, please
send an e-mail to deitel@deitel.com; we will respond promptly. Please visit our
Web site, www.deitel.com, regularly and be sure to sign up for the DEITEL BUZZ
ONLINE e-mail newsletter at www.deitel.com/newslettexr/subscribe. We use
the Web site and the newsletter to keep our readers current on all DEITEL publications
and services.

Preface
Features of C++ How to Program, Fourth Edition

This book contains many features including:

Full-Color Presentation

This book is in full color to show programs and their outputs as they typically would appear
on a computer screen. We syntax color all the C++ code, as do many C++ integrated-de-
velopment environments and code editors. This greatly improves code readability—an es-

pecially important goal, given that this book contains over 20,000 lines of code. Our
syntax-coloring conventions are as follows:

comments appear in green

keywords appear in dark blue

errors appear in red

constants and literal values appear in light blue
all other code appears in black

Code Highlighting and User-Input Highlighting

We have added extensive code highlighting. In our code walkthroughs (at Deitel, we call
these “writearounds™), we have eliminated most of the “redundant” code snippets that ap-
peared inline in the text in the Third Edition. We kept them in the earliest portion of the book
as a pedagogic device to help novices. We want the reader to see all new code features in
context, so from Chapter 3 forward, our code walkthroughs simply refer to the line numbers
of the new code segments inside complete source programs. To make it easier for readers to
spot the featured segments, we have highlighted them in bright yellow. This feature also
helps students review the material rapidly when preparing for exams or labs. We have also
highlighted in our screen dialogs all user inputs to distinguish them from program outputs.

“Code Washing”

Code washing is our term for applying comments, using meaningful identifiers, applying
indentation and using vertical spacing to separate meaningful program units. This process
results in programs that are much more readable and self-documenting. We have done ex-
tensive “code washing” of all the source code programs in the text, the lab manual, the an-
cillaries and the Cyber Classroom.

Early Introduction of Standard Library string and vector Objects

Object-oriented programming languages generally offer the ability to create string and ar-
ray objects by instantiating them from library classes or from programmer-defined classes.
It is also important for students learning C++ to become familiar with C-style, pointer-
based arrays and strings, because of the massive amount of C and early C++ legacy code
they will encounter in industry. In C++ How to Program, 4/e, we show all three means of
creating strings and arrays. In Chapters 4 and 5 we show the traditional, C-like pointer-
based arrays and strings, respectively. In Chapter 8, Operator Overloading, we create our
own user-defined classes Array and String. At the end of Chapter 8, we introduce li-
brary classes vector and string, which we explain in detail in Chapter 15 and Chapter
21, respectively. Through Chapter 8, we favor pointer-based arrays and strings; after Chap-
ter 8, we favor the library classes. The Chapter 15 material on string could be taught at
any point after Chapter 8. The Chapter 21 material on vector (and other aspects of the
STL) could also reasonably be taught after Chapter 8, although we recommend covering
Chapter 11, Templates, first.

.31 -

Preface

Tuned Treatment of Object-Oriented Programming in Chapters 9 and 10

This is one of the most significant improvements in this new edition. We performed a high-
precision upgrade to Chapters 9 and 10. The improvements make the material clearer and
more accessible to students and professionals, especially those studying object-orientation
for the first time.

Redesigned Pedagogy of Chapter 9, Object-Oriented Programming: Inheritance.
The new Chapter 9 carefully walks the reader through a five-example sequence that dem-
onstrates private data, protected data and software reuse via inheritance. We begin
by demonstrating a class with private data members and public member functions to
manipulate that data. Next, we implement a second class with several additional capabili-
ties. To do this, we duplicate much of the first example’s code. In our third example, we
begin our discussion of inheritance and software reuse—we use the class from the first
example as a base class and inherit its data and functionality into a new derived class. This
example introduces the inheritance mechanism and demonstrates that a derived class
cannot access its base class’s private data directly. This motivates our fourth example,
in which we introduce protected data in the base class and demonstrate that the derived
class can indeed access its base class’s protected data. The Jast example in the sequence
demonstrates proper software engineering by defining the base class’s data as private
and using the base class’s public member functions (that were inherited by the derived
class) to manipulate the base class’s private data from the derived class. We follow the
five-part introduction with a three-level class hierarchy that employs the software engi-
neering techniques introduced earlier in the chapter. The chapter closes with a discussion
of the three inheritance types supported by C++ and a general discussion of software engi-
neering with inheritance.

Redesigned Pedagogy of Chapter 10, Object-Oriented Programming: Polymor-
phism. The new Chapter 10 builds on the inheritance concepts presented in Chapter 9 and
focuses on the relationships between classes in a class hierarchy. Chapter 10 uses a four-
example sequence to present the powerful processing capabilities that these relationships
enable. We begin with an example that illustrates the “is-a” relationship between a derived-
class object and its base-class type. This relationship enables the derived-class object to be
treated as an object of its base class. We show that we are able to aim a base-class pointer
at a derived-class object and invoke the base-class’s functions on that object. In our second
example, we demonstrate that the reverse is not true—a base-class object is not considered
to be an object of its derived-class type—and we show that compiler errors occur if a pro-
gram attempts to manipulate a base-class object in this manner. Our third example demon-
strates that the only functions which can be invoked through a base-class pointer are those
functions defined by the base class. The example shows that attempts to invoke derived-
class-only functions result in error messages. The last example in the sequence introduces
polymorphism with virtual functions, which enable a program to process objects of classes
related by a class hierarchy as objects of their base-class type. When a virtual function is
invoked via a base-class pointer (or reference), the derived-class-specific version of that
function is invoked. The chapter continues with a case study on polymorphism in which we
process an array of objects that all have a common abstract base class that contains the set
of functions common to every class in the hierarchy. We follow this example with an in-
depth discussion of how polymorphism works “under the hood.” We conclude with a case
study that demonstrates how a program that processes objects polymorphically can still

Preface

perform type-specific processing by determining at execution time the type of the object
currently being processed.

Web Applications Development with CGI

The new Chapter 16, Web Programming with CGI. has everything readers need to begin
developing their own Web-based applications that will run on the Internet!? Readers will
learn how to build so-called n-tier applications, in which the functionality provided by each
tier can be distributed to separate computers across the Internet or executed on the same
computer. In particular, we build a three-tier online bookstore application. The bookstore's
information is stored in the application’s data tier. In industrial-strength applications, the
data tier is typically a database such as Oracle, Microsoft® SQL Server or MySQL. For
simplicity, we use text files and employ the file-processing techniques of Chapter 14 to ac-
cess these files. The user enters requests and receives responses at the application’s client
tier, which is typically a computer running a Web browser such as Microsoft Internet Ex-
plorer or Netscape®. Web browsers, of course, know how to communicate with Web sites
throughout the Internet. The middle tier contains both a Web server and an application-spe-
cific C++ program (e.g., our bookstore application). The Web server communicates with
the C++ program (and vice versa) via the CGl (Common Gateway Interface) protocol. We
use the popular Apache HTTP server as our Web server, which is available free for down-
load from www. apache .org. The Web server knows how to communicate with the cli-
ent tier across the Internet using the HyperText Transfer Protocol (HTTP). We discuss the
crucial role of the Web server in Web programming and provide a simple example that re-
quests a Web page from a Web server. We discuss CGI and how it allows a Web server to
communicate with the top tier and CGI scripts (i.e., our C++ programs). We provide a sim-
ple example that gets the time and date from the server and renders it in a browser. In our
forms-based examples we use buttons, password fields, check boxes and text fields. We
present an example of an interactive portal for a travel company that displays airfares to
various cities. Travel-club members can log in and view discounted airfares. We also dis-
cuss various methods of storing client-specific data, which include hidden fields (i.e., in-
formation stored in a Web page but not rendered by the Web browser) and cookies—small
text files that the browser stores on the client’s machine. The chapter examples conclude
with an e-business case study of an online bookstore that allows users to add books to an
electronic shopping cart. This case study contains several CGI scripts that interact with one
another to form a complete application. The online bookstore is password protectéd, so us-
ers first must log in to gain access.

XHTML

The World Wide Web Consortium (W3C) has declared HyperText Markup Language (HT-
ML) to be a legacy technology that will undergo no further development. HTML is being
replaced by the Extensible HyperText Markup Language (XHTML)—an XML-based tech-
nology that rapidly is becoming the standard for describing Web content. We use XHTML
in Chapter 16, Web Programming with CGI; Appendix E presents an XHTML introduction.
If you are not familiar with XHTML, please read Appendix E before reading Chapter 16.

2. There are other technologies for developing Web-based applications. Java developers use Java
servlets and JavaServer Pages. Windows-platform developers use Active Server Pages (ASP).
We chose CGI for this book. because both standard C++ and CGl are platform independent.

Preface

Unified Modeling Language (UML)

The Unified Modeling Language (UML) has become the preferred graphical modeling
language for designing object-oriented systems. In C++ How to Program, Third Edition,
we used the UML in optional sections only, and we used conventional flowchart segments
and inheritance diagrams to reinforce the explanations. We have fully converted the dia-
grams in the book to be UML 1.4 compliant. In particular, we upgraded all the figures in
the UML/OOD Elevator Simulation case study; we converted all the flowcharts in Chapter
2, Control Structures, to UML activity diagrams; and we converted all the inheritance dia-
grams in Chapters 9, 12, 14 and 22 to UML class diagrams.

This Fourth Edition carefully tunes the optional (but highly recommended) case study
we present on object-oriented design using the UML. In the case study, we fully implement
an elevator simulation. In the “Thinking About Objects” sections at the ends of Chapters
1-7 and 9, we present a carefully paced introduction to object-oriented design using the
UML. We present a concise, simplified subset of the UML then guide the reader through a
first design experience intended for the novice object-oriented designer/programmer. The
case study is fully solved. It is not an exercise; rather, it is an end-to-end learning experi-
ence that concludes with a detailed walkthrough of the C++ code. In each of the first five
chapters, we concentrate on the “conventional” methodology of structured programming,
because the objects that we build will use these structured-program pieces. We conclude
each chapter with a “Thinking About Objects” section, in which we present an introduction
to object orientation using the UML. These “Thinking About Objects” sections help stu-
dents develop an object-oriented way of thinking, so that they immediately can use the
object-oriented programming concepts they begin learning in Chapter 6. In the first of these
sections at the end of Chapter 1, we introduce basic concepts (i.e., “object think™) and ter-
minology (i.e., “object speak™). In the optional “Thinking About Objects” sections at the
ends of Chapters 2—5, we consider more substantial issues, as we undertake a challenging
problem with the techniques of object-oriented design (OOD). We analyze a typical
problem statement that requires a system to be built, determine the objects needed to imple-
ment that system, determine the attributes these objects need to have, determine the behav-
jors these objects need to exhibit and specify how the objects need to interact with one
another to meet the system requirements. We accomplish this even before we discuss how
to write object-oriented C++ programs. In the “Thinking About Objects” sections at the
ends of Chapters 6, 7 and 9, we build a C++ implementation of the object-oriented system
we designed in the earlier chapters. This project enabled us to incorporate topics that we do
not discuss in any other section of the book, including object interaction, an in-depth dis-
cussion of handles, the philosophy of using references vs. pointers and the use of forward
declarations to avoid circular-include problems. This case study will help prepare students
for the kinds of substantial projects they will encounter in industry. We employ a carefully
developed, incremental object-oriented design process to produce a UML.-based design for
our elevator simulator. From this design, we produce a substantial working C++ implemen-
tation using key programming notions, including classes, objects, encapsulation, visibility,
composition and inheritance.

More About the (Optional) Elevator Simulation Case Study

This case study was introduced in C++ How to Program, 3/e, and was carefully tuned for
the Fourth Edition. We brought all the UML diagrams into compliance with version 1.4,
we reorganized many of the diagrams to make them clearer, we code washed the complete

Preface

C++ solution presented in the book, and we tuned the discussions for clarity and precision.
The case study was submitted to a distinguished team of OOD/UML reviewers, including
leaders in the field from Rational (the creators of the UML) and the Object Management
Group (responsible for maintaining and evolving the UML).

In Chapter 2, we begin the first phase of the object-oriented design (OOD) for our ele-
vator simulator—identifying the classes needed to implement the simulator. We also intro-
duce the UML use case, class and object diagrams and the concepts of associations,
multiplicity, composition, roles and links. In Chapter 3, we determine many of the class
attributes needed to implement the elevator simulator. We also introduce the UML state-
chart and activity diagrams and the concepts of events and actions as they relate to these
diagrams. In Chapter 4, we determine many of the operations (behaviors) of the classes in
the elevator simulation. We also introduce the UML sequence diagram and the concept of
messages sent between objects. In Chapter 5, we determine the collaboration (sets of inter-
actions among objects in the system) needed to implement the elevator system and repre-
sent these interactions using the UML collaboration diagram. We also include a
bibliography and a list of Internet and Web resources that contain the UML 1.4 specifica-
tions and other reference materials, general resources, tutorials, FAQs, articles, white-
papers and software. In Chapter 6, we use the UML class diagram developed in previous
sections to outline the C++ header files that define our classes. We also introduce the con-
cept of handles to objects in the system, and we begin to study how to implement handles
in C++. In Chapter 7, we present a complete elevator simulator C++ program (approxi-
mately 1200 lines of code) and a detailed code walkthrough. The code follows directly from
the UML-based design created in previous sections and employs our best programming
practices. We also discuss dynamic-memory allocation, composition, object interaction via
handles, and how to use forward declarations to avoid the circular-include problem. In
Chapter 9, we update the elevator simulation design and implementation to incorporate
inheritance and suggest further modifications.

Standard Template Library (STL)

This might be one of the most important chapters in the book in terms of your appreciation
of software reuse. The STL defines powerful, template-based, reusable components that
implement many common data structures and algorithms used to process those data struc-
tures. Chapter 21 introduces the STL and discusses its three key components—containers,
iterators and algorithms. STL containers are data structures capable of storing objects of
any data type. We show that there are three container categories—first-class containers,
adapters and near containers. STL iterators, which are similar to pointers (but much safer),
are used by programs to manipulate the STL-container elements. In fact, standard arrays
can be manipulated as STL containers, using standard pointers as iterators. We show that
manipulating containers with iterators is convenient and provides tremendous expressive
power when combined with STL algorithms—in some cases, reducing many lines of code
to a single statement. STL algorithms are functions that perform common data manipula-
tions such as searching, sorting, comparing elements (or entire data structures), etc. There
are approximately 70 algorithms implemented in the STL; these include common container
operations such as searching for an element, sorting elements, comparing elements, remov-
ing elements, replacing elements and many more. Most of these algorithms use iterators to
access container elements. We show that each first-class container supports specific iterator
types, some of which are more powerful than others. A container’s supported iterator type

Preface

determines whether the container can be used with a specific algorithm. Iterators encapsu-
late the mechanism used to access container elements. This encapsulation enables many of
the STL algorithms to be applied to a variety of containers without regard for the underly-
ing container implementation. As long as a container’s iterators support the minimum re-
quirements of the algorithm, the algorithm can process that container’s elements. This also
enables programmers to create algorithms that can process the elements of multiple con-
tainer types. An advantage of the STL is that programmers can reuse the STL containers,
iterators and algorithms to implement common data representations and manipulations.
This reuse saves substantial development time and resources.

Teaching Approach

Our book is intended to be used at the introductory and intermediate levels. We have not
attempted to cover every feature of the C++ standard. C++ has replaced C as the industry’s
high-performance systems-implementation language of choice. However, C programming
continues to be an important and valuable skill, because of the enormous amount of C leg-
acy code that must be maintained in industry. We point out pitfalls and explain procedures
for dealing with them effectively. Students are highly motivated by the fact that they are
learning a leading-edge language (C++) and a leading-edge programming paradigm (ob-
ject-oriented programming) that will be immediately useful to them as they leave the col-
lege environment.

C++ How to Program, 4/e, contains a rich collection of examples, exercises and
projects drawn from many fields and designed to provide students with a chance to solve
interesting, real-world problems. The code examples in the text have been tested on mul-
tiple compilers—Microsoft Visual C++ 6, Microsoft Visual C++ .NET, two versions of
Borland C++Builder and two versions of GNU C++. For the most part, the programs in the
text will work on all ANSI/ISO standard-compliant compilers; we posted the few problems
we found at www.deitel.com. When possible, we also posted the exact fixes required
to enable those programs to work with a particular compiler.

The book concentrates on the principles of good software engineering and stresses pro-
gram clarity. We are educators who teach edge-of-the-practice topics in industry class-
rooms worldwide. This text emphasizes good pedagogy.

Live-CODE Approach

C++ How ro Program, 4/e, is loaded with numerous LIVE-CODE examples. Each new
concept is presented in the context of a complete, working example that is immediately fol-
lowed by one or more sample executions showing the program’s input/output dialog. This
style exemplifies the way we teach and write about programming and is the focus of our
multimedia Cyber Classrooms and Web-based training courses. We call this method of
teaching and writing the LIVE-CODE Approach. We use programming languages to
teach programming languages. Reading the examples in the text is much like typing and
running them on a computer.

World Wide Web Access !
All of the source-code examples for C++ How to Program, 4/e, (and our other publica-
tions) are available on the Internet as downloads from the following Web sites:

www.deitel.com
www.prenhall.com/deitel

Preface

Registration is quick and easy and the downloads are free. We suggest downloading all the
examples, then running each program as you read the corresponding text. Making changes

to the examples and immediately seeing the effects of those changes is a great way to en-
hance your C++ learning experience.

Objectives
Each chapter begins with objectives that inform students of what to expect and gives them

an opportunity, after reading the chapter, to determine whether they have met the intended
objectives. The objectives serve as confidence builders.

Quotations
The chapter objectives are followed by sets of quotations. Some are humorous, some are
philosophical and some offer interesting insights. We have found that students enjoy relat-

ing the quotations to the chapter material. Many of the quotations are worth a second look
after you read the chapters.

Outline

The chapter outline enables students to approach the material in a top-down fashion. Aleng
with the chapter objectives, the outline helps students anticipate future topics and set a com-
fortable and effective learning pace.

20,704 Lines of Syntax-Colored Code in 267 Example Programs (with Program Out-
puts)

We present C++ features in the context of complete, working C++ programs. These LIVE-
CODE programs range in size from just a few lines of code to substantial examples con-
taining several hundred lines of code. Each program is followed by a window containing
the outputs produced when the program is run. This enables the student to confirm that the
programs run as expected. Relating outputs back to the program statements that produce
those outputs is an excellent way to learn and to reinforce concepts. Our programs exercise
the diverse features of C++. The code is syntax colored with C++ keywords, comments and
other program text each appearing in different colors. This facilitates reading the code—
students especially will appreciate the syntax coloring when they read the larger programs
we present. All of the examples are available on the book’s CD and are free for download
at www.deitel.com.

598 Illustrations/Figures

An abundance of charts, line drawings and program outputs is included. We have converted
all flowcharts to UML activity diagrams. We also use UML class diagrams in Chapters 9,
10, 12, 14 and 22 to model the relationships between classes throughout the text.

601 Programming Tips

We have included six types of programming tip to help students focus on important aspects
of program development, testing and debugging, performance and portability. We high-
light hundreds of these tips as Good Programming Practices, Common Programming Er-
rors, Performance Tips, Portability Tips, Software Engineering Observations and Testing
and Debugging Tips. These tips and practices represent the best we could glean from al-
most six decades (combined) of programming and teaching experience. One of our stu-

.37

Preface

dents—a mathematics major—told us recently that she feels this approach is similar to the
highlighting of axioms, theorems and corollaries in mathematics books, because it provides
a sound basis on which to build good software.

90 Good Programming Practices

Good Programming Practices are tips that call attention to techniques that help students pro-
duce programs that are more readable, self-documenting and easier to maintain. When we
teach introductory courses to nonprogrammers, we state that the “buzzword” of each course
is “clarity,” and we tell the students that we will highlight (in these Good Programming Prac-

tices) techniques for writing programs that are clearer, more understandable and more
maintainable.

Y 198 Common Programming Errors -

Students learning a language—especially in their first programming course—tend to make
certain kinds of errors frequently. Focusing on these Common Programming Errors reduces
the likelihood that students will makes the same mistakes. It also shortens long lines outside
instructors’ offices during office hours!

88 Performance Tips
@ In our experience, teaching students to write clear and understandable programs is by far

the most important goal for a first programming course. But students want to write the pro-
grams that run the fastest, use the least memory, require the smallest number of keystrokes
or dazzle in other ways. Students really care about performance and they want to know what
they can do to produce the most efficient programs. So we include Performance Tips that
highlight opportunities for improving program performance—making programs run faster
or minimizing the amount of memory that they occupy.

{ 36 Portability Tips

Software development is a complex and expensive activity. Organizations that develop soft-
ware must often produce versions customized to a variety of computers and operating sys-
tems. So there is a strong emphasis today on portability, i.e., on producing software that will
run on a variety of computer systems with few, if any, changes. Some programmers assume
that if they implement an application in standard C++, the application will be portable. This
is simply not the case. Achieving portability requires careful and cautious design. There are
many pitfalls. We include Portability Tips to help students write portable code and to provide
insights on how C++ achieves its high degree of portability.

149 Software Engineering Cbservations

The object-oriented programming paradigm necessitates a complete rethinking of the way
we build software systems. C++ is an effective language for achieving good software engi-
neering. The Software Engineering Observations highlight architectural and design issues,
that affect the construction of software systems, especially large-scale systems. Much of what
the student learns here will be useful in upper-level courses and in industry as the student
begins to work with large, complex real-world systems.

Vi"h;n;t;ejﬁrct d'esig.r;ed this “tip i‘);pe, " we thought the tips would contain suggestions strictly
for exposing bugs and removing them from programs. In fact, many of the tips describe as-

@ 38 Testing and Debuggmg fips

Preface

pects of C++ that prevent “bugs” from getting into programs in the first place, thus simpli-
fying the testing and debugging process.

Summary (875 Summary bullets)

Each chapter ends with additional pedagogical devices. We present a thorough, bullet-
list-style summary of the chapter. This helps the student review and reinforce key concepts.
There is an average of 40 summary bullets per chapter.

Terminology (1782 Terms)

We include an alphabetized list of the important terms defined in the chapter in a Terminology
section. Again, this serves as further reinforcement. There are, on average, 81 terms per chap-
ter. Each term also appears in the index, so the reader can locate terms and definitions quickly.

555 Self-Review Exercises and Answers (Count Includes Separate Parts)

Extensive Self-Review Exercises and Answers to Self-Review Exercises are included for self
study. This gives the student a chance to build confidence with the material and prepare to
attempt the regular exercises.

800 Exercises (Solutions in Instructor’s Manual; Count Includes Separate Parts)

Each chapter concludes with a substantial set of exercises including simple recall of im-
portant terminology and concepts; writing individual C++ statements; writing small por-
tions of C++ functions and classes; writing complete C++ functions, classes and programs;
and writing major term projects. The large number of exercises enables instructors to tailor
their courses to the unique needs of their audiences and to vary course assignments each
semester. Instructors can use these exercises to form homework assignments, short quizzes
and major examinations. The solutions for the exercises are included on the Instructor’s
CD which is available only to instructors through their Prentice Hall representatives.
[NOTE: Please do not write to us requesting the Instructor’s CD. Distribution of this
ancillary is limited strictly to college professors teaching from the book. Instructors
may obtain the solutions manual only from their Prentice Hall representatives.] Stu-
dents and professional readers can obtain solutions to approximately half the exercises in
the book by purchasing the optional C++ Multimedia Cyber Classroom, 4/e. The Cyber
Classroom offers many other valuable capabilities as well and is ideal for self study and
reference. Also available is the boxed product, The Complete C++ Training Course, 4/e,
which includes both our textbook, C++ How to Program, 4/e, and the C++ Multimedia
Cyber Classroom, 4/e. All of our Complete Training Course products are available at book-
stores and online booksellers, including www . informIT.com.

Approximately 5,000 Index Entries (with approximately 7, 700 Page References)

We have included an extensive Index at the back of the book. Using this resource, readers
can search for any term or concept by keyword. The Index is useful to people reading the
book for the first time and is especially useful to professional programmers who use the
book as a reference. These index entries also appear as hyperlinks in the C++ Mulrimedia
Cyber Classroom, 4/e.

“Double Indexing” of All C++ LIVE-CODE Examples
C++ How to Program, 4/e, has 267 LIVE-CODE examples, which we have “double in-
dexed.” For every C++ source-code program in the book, we took the figure caption and in-

Preface

dexed it both alphabetically and as a subindex item under “Examples.” This makes it easier
to find examples that are demonstrating particular features. Each of the figure captions also
appears in the Illustrations section (following the Contents section) at the front of the book.

Software Included with C++ How to Program, 4/e

C++ How to Program, 3/e, included on its CD the Microsoft Visual C++ 6 Introductory
Edition development environment. In C++ How to Program, 4/e, we wanted to include Mi-
crosoft’s new Visual C++ .NET development environment, but Microsoft was not as yet
making this software available to be included with textbooks. As soon as Microsoft does
make Visual C++ .NET available, we will post information at our Web site indicating how
students and professionals can obtain this software; there will be separate instructions for
students and professionals. C++ How to Program, 4/e, includes Microsoft Visual C++ 6
Introductory Edition. A separate value-pack option also is available that contains Metro-
werks CodeWarrior (ISBN# 0-13-101151-0); for more information on this option please
write 10 cs@prenhall.com or deitel@deitel.com.

Free C++ Compilers and Trial-Edition C++ Compilers on the Web

This section overviews C++ compilers that are available for download over the Web. We
discuss only those compilers that are available for free or as free-trial versions. Please keep
in mind that in many cases, the trial-edition software cannot be used after the trial period
has expired.

One popular organization that develops free software is the GNU Project
(www . gnu . org), originally created to develop a free operating system similar to UNIX.
GNU offers developer resources, including editors, debuggers and compilers. Many devel-
opers use the gcc (GNU Compiler Collection) compilers, available for download from
gcc.gnu.org. This product contains compilers for C, C++, Java and other languages.
The gcc compiler is a command-line compiler (i.e., it does not provide a graphical user
interface). Many Linux and UNIX systems come with the gcc compiler installed. Red Hat
has developed Cygwin (www.cygwin.com), an emulator that allows developers to use
UNIX commands on Windows. Cygwin includes the gcc compiler.

Intel provides 30-day trial versions for its Windows and Linux C++ command-line com-
pilers. The 30-day trial period also includes free customer support. Information on both com-
pilers can be found at developer.intel.com/software/products/ global/
eval.htm

Borland provides a Windows-based C++ developer product called C++Builder
(www.borland.com/cbuilder/ cppcomp/index.html). The basic C++Builder
compiler (a command-line compiler) is free for download. Borland also provides several
versions of the C++Builder that contain graphical user interfaces (GUIs). These GUIs are
more formally called integrated development environments (IDEs), and, unlike command-
line compilers, enable the developer to edit, debug and test programs quickly. Using an
IDE, many of the tasks that involved tedious commands can now be executed via menus
and buttons. Some of these products are available on a free-trial basis. For more informa-
tion on C++Builder, visit

www .borland.com/products/downloads /download_cbuilder.html

Preface

For Linux developers, Borland provides the Borland Kylix development environment. The
Borland Kylix Open Edition, which includes an IDE, can be downloaded from

www.borland.com/products/downloads/download_kylix.html

Many of the downloads available from Borland require users to register.

The Digital Mars C++ Compiler (www.digitalmars.com), is available for Win-
dows and DOS, and includes tutorials and documentation. Readers can download a com-
mand-line or IDE version of the compiler. The DJIGPP C/C++ development system is
available for computers running DOS. DJGPP stands for DJ’s GNU Programming Plat-
form, where DJ is for DJ Delorie, the creator of DJGPP. Information on DJGPP can be
found at www .delorie.com/djgpp. Locations where the compiler can be downloaded
at are provided at www.delorie.com/djgpp/getting.html.

Di1vE-INTO Series Tutorials for Popular C++ Environments
We have launched our new DIVE-INTO SERIES of tutorials to help our readers get started
with many popular C++ program-development environments. These are available free for
download at www.deitel.com/books/downloads.html.

Currently, we have the following DIVE-INTO SERIES publications:

e DIVE-INTO Microsoft® Visual C++® 6

* Dive-Into Microsofr® Visual C++® NET

e Dive-Into Borland C+ +Builder Compiler (command-line version)
e Dive-Into Borland C++Builder Personal (IDE version)

e Dive-Into GNU C++ on Linux

e Dive-Into GNU C++ via Cygwin on Windows (Cygwin is a UNIX emulator for
Windows that includes the GNU C++ compiler.)

Each of these tutorials shows how to compile, execute and debug C++ applications in that
particular compiler product. Many of these documents also provide step-by-step instruc-
tions with screenshots to help readers to install the software. Each document overviews the
compiler and its online documentation.

Ancillary Package for C++ How to Program, 4/e

C++ How to Program, 4/e, has extensive ancillary materials for instructors. The /nstruc-
tor’s Resource CD (IRCD) contains the Instructor’s Manual with solutions to the vast ma-
jority of the end-of-chapter exercises and a Test Item F. ile of multiple-choice questions
(approximately two per book section). In addition, we provide PowerPoint® slides contain-
ing all the code and figures in the text, and bulleted items that summarize the key points in
the text. Instructors can customize the slides. The PowerPoint® slides are downloadable
from www . deitel .com and are available as part of Prentice Hall’s Companion Web Site
(www.prenhall.com/deitel) for C++ How to Program, 4/e, which offers resources
for both instructors and students. For instructors, the Companion Web Site offers a Syllabus
Manager, which helps instructors plan courses interactively and create online syllabi.

.41.

Preface

Students also benefit from the functionality of the Companion Web Site. Book-specific
resources for students include:

+ Customizable PowerPoint® slides

* Example source code

Reference materials from the book appendices (such as operator-precedence
chart, character set and Web resources)

Chapter-specific resources available for students include:

* Chapter objeétives

Highlights (e.g., chapter summary)

Outline

« Tips (e.g., Common Programming Errors, Good Programming Practices, Porta-

bility Tips, Performance Tips, Software Engineering Observations and Testing
and Debugging Tips)

e Online Study Guide—contains additional short-answer self-review exercises

(e.g., true/false and matching questions) with answers and provides immediate
feedback to the student

Students can track their results and course performance on quizzes using the Student Pro-
file feature, which records and manages all feedback and results from tests taken on the Com-

panion Web Site. To access DEITEL Companion Web Site, visit www.prenhall .com/
deitel.

C++in the Lab

This lab manual (full title: C++ in the Lab, Lab Manual to Accompany C++ How to Pro-
gram, Fourth Edition; ISBN 0-13-038478-X) complements C++ How to Program, 4/e,
and the optional C++ Multimedia Cyber Classroom, 4/e, by providing a series of hands-on
lab assignments designed to reinforce students’ understanding of lecture material. This lab
manual is designed for closed laboratories, which are regularly scheduled classes super-
vised by an instructor. Closed laboratories provide an excellent learning environment be-
cause students can use concepts presented in class to solve carefully designed lab problems.
Instructors are better able to gauge the students’ understanding of the material by monitor-
ing the students’ progress in lab. This lab manual also can be used for open laboratories,
homework and for self-study.

C++ in the Lab focuses on Chapters 1-14 and 17 of C++ How to Program, 4/e. Each
chapter in the lab manual is divided into Prelab Activities, Lab Exercises and Postlab Activi-
ties.> Each chapter contains objectives that introduce the lab’s key topics and an assignment
checklist that allows students to mark which exercises the instructor has assigned. Each page
in the lab manual is perforated, so students can submit their answers (if required).

3. We expect few introductory classes to advance beyond Chapter 10 of this lab manual. For this rea-
son, the labs in Chapters 11-14 and 17 do not contain the extensive sets of activities available in
the previous chapters. Nevertheless, instructors will be able to conduct effective labs using the ex-
ercises we have included on these more complex topics. Instructors with special requirements
should write to deitel@deitel .com

