SQL

- Structured Query Language




SQL

Structured Query Language

2nd Edition

Dr. Carolyn J. Hursch
Dr. Jack L. Hursch

IW WINDCREST®



Notices

ACCELL/SQL

dBASE™ dBASE IV™
Empress™

IBM™ DB2™ IMS™ SQL/DS™
Intormix

Ingres™

Microsoft™

Novell™ XQL™

Oracle™ SQL*Plus™
PARADOX™ Paradox SQL Link™
Rdb™ VAX™ SQL VAX™
R:BASE™

SQLBASE™

XDB

SECOND EDITION
FIRST PRINTING

Unify Corp.

Ashton-Tate Corp.

Empress Software Inc.
International Business Machines Corp.
Informix Software, Inc.
Relational Technology Inc.
Microsoft Corp.

Novell Inc.

Oracle Corp.

Borland International i
Digital Equipment Corp. Vv
Microrim, Inc.

Gupta Technologies

Software Systems, Inc.

© 1991 by Windcrest Books, an imprint of TAB Books.

TAB Books is a division of McGraw-Hill, Inc.

The name “Windcrest” is a registered trademark of TAB Books.

Printed in the United States of America. All rights reserved. The publisher takes no
responsibility for the use of any of the materials or methods described in this book,

nor for the products thereof.

Library of Congress Cataloging-Iin Publication Data

Hursch, Carolyn J.

Sql, structured query fanguage / by Carolyn J. Hursch and Jack L.

Hursch.—2nd ed.
cm.

p. A
Rev. ed. of: SQL, the structured query language. 1st ed. c1988.
Includes bibliographical references and index.
ISBN 0-8306-8803-X ISBN 0-8306-3803-2 (pbk.)
1.'SQL (Computer program language) 2. Data base management.
I. Hursch, Jack L. Il. Hursch, Carolyn J. SQL, the structured

query language. lll. Title.
QAT76.73.567H87 1991

005.75'6—dc20 91-2669
CiP

TAB Books offers software for sale. For information and a catalog, please contact
TAB Software Department, Blue Ridge Summit, PA 17294-0850.

Book Editor: Patti McCarty

Production: Katherine G. Brown

Book Design: Jaclyn J. Boone

Electronic Pre-press: Tertv Hite WP1



Introduction

The widespread implementation of relational ddtabases has brought
with it the need for a database language that is user-friendly for the
casual user, yet convenient for the programmer and applications
builder. The Structured Query Language, SQL (commonly pro-
nounced SEQUEL), after a rapid period of evolution, fills that need. It
is easily learned and understood by the end user, and also can be
embedded by the programmer in procedural languages such as C,
Cobol, or PL/1.

"The SQL language provides a much needed common avenue of
discourse between the end-user and the programmer. This act alone
provides substantial benefit in smoothing out the transition from
paper files to computerized database systems, and in the develop-
ment of applications for existing database systems.

This text sets forth the structure and syntax of SQL, in sufficient
detail for those who are not computer professionals to quickly learn
and make use of it to create, maintain, and query a relational
database of any size. All of the commonly used SQL features are
exhibited and worked through step-by-step with examples. Exercises
at the end of most chapters make the text appropriate for classroom
use.
Because our purpose is to present the complete picture of SQL, its
mathematical structure is traced from its basis in first-order logic to
its present-day role as a structured query language. The chapters
that work through this process are set apart from the detailed
description of the SQL language because they will be of interest main-
ly to computer science professionals.



Iintroduction

CHAPTER 1 traces the history of the development of SQL from E. F.
Codd's articles in the early 1970s, setting forth the principles of a
relational database, through the Chamberlin articles of the late
1970s, to the latest publications of the American National Standards
Institute (ANSI) in their efforts to develop a standard SQL language.

CHAPTER 2 sets forth the notation and defines the terms used
throughout the book.

CHAPTER 3 contains an overview of all of the components of con-
ventional SQL language, the SQL commands, key words, datatypes
and value expressions supported by SQL. The three main types of
statements—Data Definition, Data Manipulation, and Data Control—
are listed and the syntax for each is shown, as well as the syntax for
the various expressions, connectives, predicates, and functions that
make up the SQL language.

CHAPTER 4 contains explanations and examples of the use of SQL
table expressions and predicates in preparation for using them to set
up a database in the next chapter.

CHAPTER 5 illustrates the use of the Data Definition statements
CREATE, ALTER, and DROP, and gives examples of these statements as
they are used to define and modify tables in an illustrative database
system.

CHAPTER 6 illustrates the use of the Data Manipulation com-
mands INSERT, UPDATE, DELETE, and SELECT. Because creating views
(unlike creating tables) involves data manipulation, it is included in
this chapter.

CHAPTER 7 explains the use of the Data Control statements, by
the persons who must administer the database, and discusses the
security and integrity constraints that may be invoked using SQL.

CHAPTER 8 shows the use of aggregate functions, logical operators
and subqueries as they are employed in SQL, and includes examples
of the use of NOT with each of these.

CHAPTER 9 is devoted exclusively to the topic of joins because
joins can add a great deal to the efficient use of a relational database.
Equijoins and non-equijoins are explained, as well as the Cartesian
product, natural joins, and outer joins.

CHAPTER 10 is a detailed discussion of views. With a well-designed
database, the end user will be using views most of the time rather
than base tables. At the same time, not all operations possible with
tables are possible with views. Therefore, SQL operations on views are
explained and the view-update problem is discussed. In CHAPTER 10
the use of indices is discussed. This leads to a discussion of the opti-
mal formation of queries to speed up the retrieval process.

CHAPTER 11 discusses the elements of relational algebra and
relates them to SQL. SQL has been said to “resemble” the tuple rela-



Introduction

tional calculus. However, it contains properties taken from both the
relational algebra and the relational calculus. ’

CHAPTER 12 develops the elements of the first-order logic needed
for the tuple relational calculus as discussed by E. F. Codd in an early
article. Interpretations as developed in the propositional calculus and
the predicate calculus with quantifiers are explained, and their
extension in the predicate calculus to a database scheme is exhibit-
ed. This database scheme is then shown to be an interpretation deter-
mining a form of the predicate calculus known as the tuple relational
calculus. The extension of the idea of an interpretation is shown to
determine what is retrieved by means of a query formulated in the
tuple relational calculus. Finally, the examples and exercises show
how the tuple relational calculus queries are converted to SQL
queries. Thus, chapter 12 demonstrates the theme by which SQL
developed from the need for a query language through first-order
logic to a user-friendly relational database interface.

CHAPTER 13 presents “embedded SQL,” a form of SQL that can be
embedded in computer programs and converted to host language
code with a precompiler. Cursors (implementor-defined work areas
for holding relational tables obtained from queries) are discussed, as
well as the embedded SQL commands for manipulating cursors. The
goal in chapter 13 is to present embedded SQL as it now exists under
the current ANSI Standard and most current implementations with-
out limiting the presentation to any one implementation. Suggestions
are made for modifying the embedding process to make the program-
mers task less onerous and more likely to produce bug-free pro-
grams. These suggestions are demonstrated by examples of SQL
embedded in short C language modules, which programmers can
modify to fit their own implementation and requirements.

CHAPTER 14 describes the use of SQL in some of the principal
commercial relational databases and SQL servers now on the market.

CHAPTER 15 describes the requirements that must be met by a
commercial database in order to claim conformance with the ANSI
standard.

A Glossary defines all words relevant to SQL, as well as all rela-
tional database terms that the reader might need to know in connec-
tion with this topic.

A Bibliography provides the interested reader with additional
sources of information on all of the topics covered.

Xi



Contents

Introduction ix
How SQL got here 1
Roots 2

Fully relational databases« 3
Current status 5
Summary 6

Notation and definitions 7

Notation 7

Definitions 8

Relations 8

Relation schemes 9
Databases 9

Tables 10

Virtual tables (views) 10
Columns 11

Rows 11

Data values 12
Target list 12

NULL values 12

The NULL Value function 13
Reserved words 14
Database objects 14
Result tables 14
Sumnuvay 14



3 The components of SQL

The catalog 15
SQL commands 16
Reserved words 16
Datatypes 17
Value expressions 18
Logical connectives 18
Predicates 19
The Data Definition Language (DCL) 19
Creating tables 19
Creating an index 20
Altering tables 20
Dropping tables 20
Dropping indices 21
The Data Manipulation Language (DML) 21

Inserting 21
Updating 22
Deleting 22

Retrieving (using SELECT) 23
Creating views 23
The Data Control Language (DCL) 24
Table expressions (clauses) 24
Aggregate functions 25
Subqueries 25
Summary 26

Table expressions and predicates

Table expressions (clauses) 27
FROM clause 28
WHERE clause 28
GROUP BY clause 29
HAVING clause 30
ORDER BY clause 31
Predicates 32
Comparison predicate 32
BETWEEN predicate 33
IN (or NOT IN) predicate 34
LIKE (or NOT LIKE) predicate 36
NULL predicate 37

Quantified predicates ALL, SOME and ANY 38

EXISTS predicate 39
Summary 40
Chapter 4 exercises 40
Answers to chapter 4 exercises 40

15

27



5 Using data definition statements

CREATE DATABASE 43

CREATE SCHEMA 44

CREATE STORAGE AREA 44

CREATE TABLE 45

CREATE DOMAIN 50

CREATE SYNONYM 50

CREATE VIEW 51

CREATE INDEX 51

ALTERTABLE 51

COPY 53

DROP DATABASE 53

DROP SCHEMA 53

DROP STORAGE AREA 54

DROP TABLE 54

DROP DOMAIN 54

DROP SYNONYM 54 ‘

DROP VIEW 55 i

DROP INDEX 55

Summary 55

Chapter 5 exercises 56
Answers to chapter 5 exercises 56

Using data manipulatiofr statements

INSERT 59
Inserting part or all of a single row 60

Inserting multiple rows, or parts of multiple rows

UFDATE 63
DELETE 64
SELECT 65
CREATE VIEW 66
Summary 67
Chapter 6 exercises 67
Answers to chapter 6 exercises 68

Using data control statements

Access control 71

GRANT 71

REVOKE 74

Views as security devices 75
Integrity control 75

COMMIT 75

BEGIN, START, and SET TRANSACTION 76

ROLLBACK 77

Summary 78
Chapter 7 exercises 78
Answers to chapter 7 exercises 78

43

59

71



8

10

Logical connectives, aggregate
functions, and subqueries
Logical connectives 81 e
AND (INTERSECTION) 81 -
OR (UNION) 82
Using AND and OR in the same query. 83
MINUS (Difference) 84
Substituting IN and NOT IN for AND, OR or MINUS
Aggregate functions 86 .
AVERAGE (AVG) 88

COUNT 89
COUNT(s) 89
SUM 89

MAX and MIN 90
Aliases (correlation names) 90
Column aliases 91
Table aliases 91 _
Subqueries (SubSELECTS or nested SELECTS) 92
Subqueries that select multiple columns 93
Subqueries using EXISTS 94
Subqueries using ANY or ALLL. 94
Summary 95
Chapter 8 exercises 95
Answers to chapter 8 exercises 96

Joins
Equijoins 100

The cartesian product 102

The natural join 103

Join on specified columns only * 103
Non-equijoins 105
Additional conditions in join querles 106
Joining more than two tables 106
Joining tables to views 107
Creating a view from a join 107
Joining views to views 107
Joining a table with itself 108
Outer joins 108
Summary 109
Chapter 9 exercises 110

Answers to chapter 9 exercises 111

Views, indices, and queries

Views 113
Creating a view 114

81

84

99

113



11

12

Views on multiple tables 116
Joining a view to another view or table 117
Expressions and functions in views 117
Aggregate functions in views 117
Updating rows in views 118
Inserting rows into views 119
‘Deleting rows from views 119
Using views to restrict table access 119
Using indices to optimize performance 120
Indices and keys 120
Unique indices 121
Indices on multiple columns 121
Optimizing queries 122
Summary 122
Chapter 10 exercises 122
Answers to chapter 10 exercises 123

Relational algebra and SQL

Relational definitions 125
Boolean operators 126
Projection operator 127
Select operator 128
Join operator 128
Division of relations, lossy joins 129
Remarks 131
Summary 131
Chapter 11 exercises 131
Answers to chapter 11 exercises 132

Logic and SQL

Relational definitions 136
Formal theory 136
Interpretations 137
Propositional calculus 137
Predicates and quantifiers 140
Free and bound variables 141
Interpretations for predicate calculus 142
Tuple relational calculus 143
Simple alpha expressions 145
Alpha expressions 145
Converting alpha expressions to SQL expressions
Summary 148
Chapter 12 exercises 148
Answers to chapter 12 exercises 150

147

125

135



13

14

15

Embedded SQL S 155

Recognizing embedded SQL statements 157
A first look at embedded SQL. 157
Host variables in embedded SQL 157
Variable declaration 158
EXEC SQL INCLUDE 159
SQL commands in embedded SQL. 159
SELECT 159
UPDATE 160
DELETE 160
INSERT 160
Other SQL commands 160 :
Cursors in embedded SQL 161
SQLCODE 163
Using cursors to update and delete 169
SQLCODE revisited 170

Summary 170

SQL at work 171

System R 171

Information Management System (IMS) 172
SQL/Data System (SQL/DS) 172
Database 2 (DB2) 173
ACCELL/SQL 173

dBASEIV 173

Empress 174

Informix 174

Ingres 174

ORACLE 175

R:BASE 175

Rdb 176

' SQLBASE 176

XDB 176

XQL 177

SQL servers 177

Paradox SQL Link 177

SQL as a knowledge-base query language 178
Summary 178

ANSI conformance requirements 179
Glossary 183
Bibliography 191

Index 197



1
How SQL got here

Since the first edition of this book was published, the popularity of
Structured Query Language, SQL (commonly pronounced “sequel”),
has continued to grow at a rapid rate. Even more impressive is the
variety of innovations in the SQL language brought forth by the vast
array of relational database management systems now on the market.
The original standards set forth by the American National
Standards Institute (ANSI) have now been augmented by new pub-
lications (ANSI X3.135-1989 and ANSI X3.168 -1989), and the
ANSI staff and associates continue to work toward further refine-
ments of terms and concepts. Important as this effort is, there
actually exist two standards today: (1) the barebones, carefully
crafted ANSI Standard SQL and (2) the looser, yet broader industry
standard based on IBM's mainframe database system DB2. Most
SQL database systems on the market today are based in whole or
in part on DB2, which includes all features of the ANSI standard.
Therefore, this edition will set forth the basic ANSI SQL as it
exists at this time, augmented by the most commonly used enhance-
ments found in commercial relational database systems. Because
different vendors may use different names for the same thing, we will
note the corresponding term used by individual companies from a
list of popular vendors wherever there is a large difference in terms
for a similar operation or concept. The list of vendors can never be
conclusive. At this writing we are aware of several now in develop-
ment which we cannot yet include—and there will always be.more.
Rather, our treatment will be representative of what is now available
rather than exhaustive, and in that sense will offer a contrast in the
different approaches being used to make databases accessible. *



Chapter 1

The diversity of additions to the SQL language points up the fact
that different vendors have taken different routes to the solution of
problems arising out of the use of early versions of SQL. Certain prob-
lems, such as the use of null values, unsolved in the original ANSI
version, and still under discussion and evaluation by that organiza-
tion, have been considered, approached, circumvented, allowed for,
and perhaps solved by software manufacturers intent on supplying
users with a complete method for managing their data. Depending on
the purposes of the user, one or another of these approaches might be
sufficient until such time as the perfect solution is reached and pro-
mulgated.

Therefore, while the immediate purpose of this revised edition is
to update the ANSI version of SQL that we presented earlier, a broad-
er purpose is to show the many ways in which the ingenuity of vari-
ous vendors has enlarged and expanded its usage.

To make the reader’s life easier, a consistent set of symbols will
be used throughout this text, regardless of those used by the ven-
dors. In some cases, our symbols and terms will agree with those of a
specific vendor; sometimes not. (For example, some database sys-
temns refer to their restricted list of words as “key words”; some call
this list “reserved words.” We will call them all “reserved words”
here.)

Our definitions then, will indicate the ANSI Standard meaning of
terms, but other meanings and other terms not in ANSI although in
common use in industry, will be included.

ANSI has now set up “conformance standards” by which a
database can be judged. These will form a checklist as to whether or
not the database is in accord with ANSI Standard SQL. In response
to this, vendors now make claims in their advertising about whether
their version conforms to this standard and at what level. ANSI con-
formance requirements are discussed in chapter 15.

Roots

Here is a brief history of the development of the SQL data sublan-
guage. When E. F. Codd introduced the concept of a relational
database in 1970, he suggested that “the adoption of a relational
model of data . . . permits the development of a universal data sub-
language based on an applied predicate calculus.” Although he indi-
cated the requirements and the advantages of such a language, he
did not attempt at that time to devise one. In a later article, he dis-
cussed the concept of “relational completeness” (a termmn which he
coined, and which is now widely used) of a database sublanguage.
Acceptance of the relational idea was relatively slow (but only in



How SQL got here

comparison with the usual speed of technical advances in the com-
puter field). Therefore, it was not until 1974 that Chamberlin and
Boyce published an article suggesting the form of a structured query
language which at that time, was called SEQUEL. The following year,
Boyce, Chamberlin, King and Hammer published an article setting
forth the sublanguage SQUARE which was much like SEQUEL
except that SQUARE used mathematical expressions rather than the
English terms of SEQUEL. Both languages are shown by the authors
to be “relationally complete” in the sense outlined by Codd in his
1970 and 1972 articles. “Relationally complete” in that context
means “at least as powerful as the tuple relational calculus.”

The SQUARE article was followed by another article by
Chamberlin and others in 1976 when the name was changed to
SEQUEL 2, and it was used as the query language for the IBM
research database System R.

By the time Chamberlin wrote in 1980, summarizing user experi-

. ence with the language, the name had been changed to its present
form: SQL, denoting a “Structured Query Language.” A test of SQL
by a broad group of users resulted in several changes to the lan-
guage including the addition of “outer joins” to SQL's capabilities,
which Codd had already suggested in his 1979 article. Further devel-
opment reported in other articles resulted in present-day SQL. (See
the Bibliography for references for all publications mentioned.)

During the last decade, relational databases have emerged and

' become more popular than the hierarchical and network databases

that preceded them. This trend appears to be accelerating.

Fully relational databases

To inject some order into the rapidly increasing literature on rela-
tional databases, Codd in 1985 laid down 12 principles, at least six
of which must be satisfied in order for a database to call itself “fully
relational.” These were preceded by one overall general rule, called
“Rule Zero” as follows:

Rule 9 Relational database management. For any system that is
advertised as, or claimed to be, a relational database management
system, that system must be able to manage databases entirely
through its relational capabilities.

The essence of the 12 specific rules is as follows: _
1. Representation of information. All information in a relational

database is represented explicitly at the logical level and in
exactly one way—by values-in tables,



Chapter 1

10.

Guaranteed logical accessibility. Each and every datum
(atomic value) in a relational database is guaranteed to be

" logically accessible by resorting to a combination of table

name, primary key value and column name.

Systemnatic representation of missing information. Null values
(distinct from the empty character string or a string of blank
characters and distinct from zero or any other number) are
supported in a fully relational DBMS for representing miss-
ing information and inapplicable infermation in a systematic
way independent of detatype.

Dynamic online cateleg. The database description is repre-
sented at the local level in the same way as ordinary data, so
that suthorized users can query it in the same relatienal lan-
guage that they use in working with the regular data.
Comprehensive data sublanguage. A relational system may
support several languages and various modes of terminal
use (for example, the fill-in-the-blanks mode). However, there -
must be at least one . language whose statements are
expressible, in some well-defined syntax, as character
strings. Also, it must be comprehensive in supporting all of
the following items:

’Data definition

¢ View definition

e Data manipulation (interactive and by program)

¢ Integrity constraints

¢ Authorization

» Transaction boundaries (begin, commit and rollback)

Updatable views. All views that are theoretically updatable
are also updatable by the database system.

High-level insert, update, and delete. The capability of han-
dling a base relation or a derived relation as a single operand
applies not only to the retrieval of data but also to the inser-
tion, update and deletion of data.

Physical data independence. Application programs and ter-
minal activities remain logically unimpaired whenever any
changes are made in either storage representations or access
methods. :

Logical data independence. Application programs and termi-
nal activities remain logically unimpaired when information
preserving appropriate changes of any kind are made to the
base tables.

Integrity independence. Integrity constraints specific to a par-
ticular database must be definable in the relational data



How SQL got here

sublanguage and storable in the catalog, not in the applica-
tion program.

11. Distribution independence. Whether or not a system supports
database distribution, it must have a data sublanguage that
can support distributed databases without impairing the
application programs or terminal activities.

12. Nonsubversion. If a relational system has a low-level (single-
record-at-a-time) language, that low-level language cannot
be used to subvert or bypass the integrity rules and con-
straints expressed in the higher level relational language
{multiple-records-at-a time}.

A proof that SQL is relationally complete has been outlined by
Date (p. 276 of Date’s An Introduction to Database Systems, Vol. 1).

Chapter 12 of this book gives a discussion of the tuple relational
calculus beginning with classical logic. In this development we
demonstrate the conversion of logic queries to SQL.

The fact that the developers knew ahead of time what SQL
should be and what it would be required to do, gave it a strong theo-
retical foundation. This is probably a first in computer language
development because most computer languages in use today are the
result of a basic idea supplemented by a great deal of ad hoc patch-
ing to meet problems as they arise. This fact—of specifying the need
for SQL before developing the mechanics of it—gave rise to an ele-
gantly parsimonious language consisting of relatively few commands
that can be used to satisfy most of the needs of a very complex
database.

Its simplicity makes SQL convenient for the casual user as well
as the sophisticated developer. It can be used for ad hoc queries,
and, it also can be embedded in a host-language program.

At this point, there are several structured languages in existence
that are being used for querying relational databases. However, SQL
appears to be the one most widely adopted for commercial use.

Current status

The American National Standards Institute (ANSI) has published a
standard, called Database Language SQL, setting forth the minimal
syntax and semantics for SQL. (The ANSI Standard uses the Backus-
Nauer Form (BNF) of syntactic notation which, for the reader’s con-
venience, is not used here. See Nauer, P. in the Bibliography.)

In its most recent publication (X3.135 -1989), ANSI added an
“integrity enhancement feature” to its original SQL standard. This
feature demands that a database have some means for specifying

5



