e
e —————

- LAWRENCE J. PETERS

FOREWORD BY
L.A. BELADY

m)

SOFTWARE

DESIGN:

" METHODS & TECHNIQUES |

L AWRENCE J. PETERS

FOREWORD BY

L.A. BELADY

SOFTWARE
DESIGN:

METHODS & TECHNIQUES

Yourdon Press
1133 Avenue of the Americas
New York, New York 10036

Library of Congress Cataloging in Publication Data

Peters, Lawrence §
Software design

Bibliography: p.

Includes index

1. Electronic digital computers--Programming
1. Title.
QA76.6.P473 001.64°25 80-50609
ISBN 0.917072-19-7

Copyright © 1981 by YOURIDN inc., New York, N.Y.

All rights reserved. No part of this publication may be repro-
duced. stored in a retrieval system, or transmitted, in any form or
by any means, electronic, mechanical, photocopying, recording,
or otherwise, without prior written pg,r-mission of .the publisher.

Printed in the United States of Am.erica
Library of Congress Catalog Number 80-50609

ISBN: 0-917072-19-7

This book was set in Times Roman by YOURDDN Press, 1133
Avenue of the Americas, New York, N.Y., using a PDP-11/45
running under the UNIX' operating system.

YUNIX is 4 registered trademark of Bell Laboratories.

Acknowledgments

I wish to express my appreciation to my reviewers, whose patience and determina-
tion greatly improved this work. Specifically, I wish to thank :

Kyu Lee, Seattle University

Harry Walker, Weyerhaeuser Company

Paul DuBose, Weyerhaeuser Company

Phil Milliman, Weyerhaeuser Company

Laszlo Belady, /EEE Transactions on Software Engmeermg

1 would also like to thank all my colleagues whose comments, rdeas, and com-
plaints have been woven into the collage that is this book. My thanks to Seattle
University’s Software Engineering Graduate Program for letting m2 use a draft of this
text in the Software Design class, and to the students whose suggestions greatly
enhanced the resulting book.

Rick Eiber and Alice Wherrette, who produced the graphics, are also to be com-
mended. Lorie Mayorga, Janice Wormington, and all of the people at YOURIDN Press
are extended sincerest appreciation for their suggestions and wisdom in knowmg when
and where to kick an author and when to leave him alone.

Finally, since we live in a world that is largely the result of our own work and not
that of nature, | want to thank the world’s designers, whose efforts have greatly contri-
buted to our physical surroundings, our lives, and the way in which we perceive reality.

Preface

Qur advances in software design are a direct result of our increased
capacity to deal with systems as abstractions.

—-L.P.

The field of software development has undergone some of its most profound
changes in the last ten years. Much of this change has been in response to ever-
inicreasing demands on software systems in terms of their complexity, reliability, and
resiliency. Symptomatic of such rapid evolution is the proliferation of methods and
techniques intended to solve ‘‘the” software problem. However, real-world software
design problems often exhibit characteristics that make them unique. This forces the
software engineer to seek alternative ways of composing and documenting a design.

Software development challenges the software engineer in several ways. Unlike
many other fields, software systems will not be mass produced. This divorces the
software engineer from many problems associated with manufacturing. However, since
he is dealing with logic — the abstract — the results of his labor are difficult to identify
with. Software operates on a time scale and reference frame that are incomprehensible
by human standards. These factors, and the lack (for the most part) of an engineering
background on the part of software developers, have led to the naive view that software
design is unique and that its problems are, exclusively those of software. The software
engineer also has less guidance than technicians in other fields regardmg the scope of
his problem or the acceptability of his solution.

Software Design: Methods & Technigistes is intended to meet the need for software
design guidance, by describing both methods (strategies, recommendations, or guide-
lines based on a philosophical view) and techniques (tactics or well-advised “‘tricks of
the trade’’). It is directed at the professional software designer, novice, student,
software manager, and customer. The software manager and customer can both use the
" book to get a concise description of the issues, benefits, and liabilities associated with
using certain techniques or approaching certain software design problems in a given
way, and they may also use it to increase communication. The others can utilize it as a
resource guide providing several alternative methods and techniques; to aid experimen-
tation with existing technology; and possibly to spark some new ideas, complement lim-
‘ited experience, and provide further insight regarding what software design is and the
pros and cons of currently available techniques. The objective here is simply to cut
through the mystique surrounding software design and its accompanying methodologies,
leaving only the basics.

xii PREFACE

Software Design: Methods & Techniques is divided into four parts:

] Part I describes what design is, per se; what software engineering is.
and how design manifests itself when its intended product is software.

° Part 11 surveys different schemes for representing various software de-
sign characteristics and discusses their effectiveness and compatibility.

o Part 111 surveys different methods for composing software designs and
‘examines their effectiveness in specific design situations.

° Part 1V describes an approach for composing software design methodol-
ogies tailored to specific project issues, and discusses some of the fun-
damental issues facing the software designer today.

Softiware Design: Methods & Techniques treats the subject of software design from
several standpoints: its commonality with the problem of design in general, schemes
for formulating and documenting designs, and case study guidelines. It presents several
dozen techniques and demonstrates the use of each in sufficient detail to effectively use
each technique. Appropriate references are provided should the reader require more
detailed information. This book, with its guidance and examples, will prove an asset to
the software designer, both for composing a software design methodology to accomplish
a given task and for selecting a single technique to solve a specific problem.

Foreword

There are only two ways open to man for attaining a certain
knowledge of truth: clear intuition and necessary deduction.

— René Descartes

Software Design: Methods & Techniques is on the process of mapping real-world
phenomena onto computer programs. Since it has been written by an engineer with ex-
tensive experience in software design, this book reflects both the breadth of the process
in question and the practical leaning of the book’s author.

The notion of software design, and the perception of its importance, are relatively
new. One used to talk simply about programming when a model, usually mathematical
and already well prepared for a desk calculator, was transformed into a machine-
executable procedure. This was a relatively small step as compared, for example, to the
computerization of an entire banking operation, which is a set of activities never before
formalized, whose functioning relies on well-trained personnel to coordinate routine
tasks and solve unforeseen exception cases.

By the mid-1970s, the view that programming is but a fraction of the software
development problem became well accepted. Since then, focus has turned to design, a
complex process covering a variety of. activities that must precede the act of writing a
compilable program. At the same time, software people also discovered that designing
anything — a car, a washing machine, furniture — is rarely a well-documented activity,
is difficult to teach, and must often be based on apprenticeship at the master’s knee,
complemented later by hard-won experience.

Nevertheless, as Peters points out, design theorists agree that there are two major
phases of any design process: diversification and convergence. Diversification is the ac-
quisition of a repertoire of alternatives, the raw material for design: components, com-
ponent solutions, and knowledge, all contained in catalogs, textbooks, and the mind.
During convergence, the designer chooses and combines appropriate elements from this
repertoire to meet the, design objectives, as stated in the requirements document and as
agreed to by the customer. This second phase is the gradual elimination of all but one
particular configuration of components, and thus the creation of the final product.

Since this end product, by definition, is something that never before existed, it
may confain inconsistencies. These are often impossible to predict at the time the
design choice is made, but become manifest rather later in a larger-context. This prob-
lem has two implications: First, that a design decision, when elaborated upon, could
lead to an insight, which in turn may alter the original decision; in other words, design
is inherently iterative. The second implication is that design methods are needed in
order to recognize the occasionally unavoidable inconsistencies easily and early, so that
no time is wasted pursuing a decision chain that will have to be scrapped later.

During his work, two distinct productivity issues occupy the designer’s mind a
great deal: the productivity of the system he designs, and his own productivity in creat-
ing it. The chosen design alternative could turn into a wasteful product, but optimizing

Xiii

xiv. FOREWORD

it beyond a point may be too costly, drastically reducing design — or programming —
productivity. One definitely needs methods facilitating the rapid discovery of product
inefficiency at early stages of the design.

The need to discover inefficiency early makes it important to externalize (that is.
make visible) an evolving design at each stage. Engineering blueprints, for instance,
serve this purpose and are useful not only for a designer by calling his attention to trou-
ble spots and potential inconsistencies, but also for a team or an entire organization
developing a product: Blueprints are the major medium of communication, criticism,
and collective refinement. Moreover, representation methods must be relatively simple
and direct in bridging the gap between reality and the program; and they must be
efficient during the multiple iterative steps.

Many of the methods in this book are recommendations as to which way, and in
which order, the designer should proceed to model real-life data and their manipulation
in his program. The methods are essentially different ways of representing software as
its design evolves, guiding the decomposition of the whole into independently manage-
able pieces, enhancing communication within the design community, and helping to un-
cover inconsistencies early. Software Design: Methods & Techniques is comprehensive,
oﬁering an almost frightening variety of approaches. This proliferation is partly due to
the nature of software: namely, that it is not a physical, tangible entity, and represent-
ing it is not as obvious as showing a piece of machinery by its orthogonal geometric pro-
jections. It is also partly due to the fact that software engineering is too young a disci-
pline to-have formulated its best methods.

Software products have been observed to evolve through a vnrtually never- endmg
series of modifications. Therefore, the accompanying design documents must be updat-
ed to reflect changes in the code. This is not equally easy with all of the many methods
of representation, since some of them exist today only in hard-copy form, which re-
quires an extra reproduction budget for each modified version. With progress in display
technology, this problem may be alleviated in the future; yet today this leaves us with
an unduly large variety of potentially useful, but economically not yet feasible,
methods. ’

Finally, before 1 let the reader go ahead and enjoy the substance of the book, 1
would like to say a few words on the role of mathematics in the design process, which is
"defined differently by each of the cited approaches: ' think its role should be mainly to
aid the process of selecting from alternate arrangements and parameters, whenever key
attributes — functional correctness, performance, resource demand — can be formally
stated. For instance, in mechanical engineering, a tentative design must be completed
as a basis for a formal verification of the integrity of the proposed structure. The result
of the mathematical analysis may thus lead either to the acceptance of the designed al-
terhative or to the study of another one. This appears to be the case in conventional
engineering, and will likely remain valid in software engineering for a while, until
breakthroughs in artificial intelligence may relieve us (or deprive us?) of the chore of
designing software. '

L.A. Belady
Senior Editor
January 1981 ‘ . lIEEE Transactions on Software Engineering

Contents

Acknowledgments x
Preface i

Foreword xiii
PART I SOFTWARE: ENGINEERING AND DESIGN 1

Chapter 1: The Role of Software Design in Software Engineering

Scope 6

A modeling approach 6

A model of software engineering 7
The software development life cycle 12
Introducing software design 17

Issues in software design 18
Conclusion 18

Exercises 19

References 20

Chapter 2: Defining Design 22

2.1 The problem of defining design 23
2.2 Design as a process 23
2.3 Design as a wicked problem 25
2.4 Design as definition and response to critical issues 27
2.5 Design as goal attainment 31
2.6 Design as a viewpoint 33
2.7 Design as an integral process of problem definition and solution
2.8 Conclusion 35
Exercises 36
References 37

‘PART I DESIGN REPRESENTATION TECHNIQUES 39

ok ottt bk
~N N WA WN -

Chapter 3: Representing System Architecture 43

3.1 Leighton diagrams 44

3.2 HIPO 48

3.3 Summary of characteristics 51
Exercises. 54
References 55

Chapter 4: Representing Design Structure 56
4.1 Designtree 56
4.2 Structure charts 60
4.3 Structured analysis and design technique 62 !
4.4 Systematic activity modeling. method 64
4.5 Summary of characteristics 67
Exercises 70
References 71

vii

33

viii CONTENTS

Chapter 5: Representing Database Structure 72

5.1 Chen entity-relationship approach 73
5.2 Data dictionary 76
5.3 Daia structure diagrams 77
5.4 DeMarco’s data structure diagram approach 79
5.5 Flory and Kouloumdjian approach 81
5.6 Graph model of behavior data charts 83
5.7 Jackson's data structure approach 85
5.8 Problem analysis diagram 86
5.9 Summary of characteristics 88
Exercises 89
References 90

Chapter 6: Representing Software Behavior 91

6.1 Pseudocode 9l
6.2 Flowcharts 93
- 6.3 Control graphs 96
6.4 Decision tables 99
6.5 Dill, Hopson, and Dixon approach 100
6.6 Ferstl diagrams 101
6.7 GREENPRINT 105
6.8 Hamilton-Zeldin approach 107
6.9 Nassi-Shneiderman approach 109
6.10 Problem analysis diagram 110
6.11 Structured control-flow and top-down 114
6.12 Structured flowcharting approach 116
6.13 Transaction diagrams 118
6.14 Weiderman-Rawson approach 120
6.15 Summary of characteristics - 121
Exercises 125
References 126

PART II1 SOFTWARE DESIGN METHODS 129

Chapter 7: Data Flow-Oriented Methods 133

7.1 Structured analysis and design technique 134
7.2 Systematic activity modeling method 136
7.3 Structured design 139
7.4 Summary 146
References 151

Chapter 8: Data Structure-Oriented Methods 152
8.1 Jackson's method 152
8.2 Logical construction of programs 159
8.3 Structured systems development 164
84 Summary 165
References 169

Chap

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

PART IV SOFTWARE DESIGN ENGINEERING

Chapter 10: Developing a Software Design Methodology

Overview of the process 198
Framework for developing a software design methodology
Developing a software desnsn methodology
Case studies 207

10.5 Other software design practices
Summary 215

10.1
-10.2
10.3
10.4

10.6

ter 9: Prescriptive Methods 170

Chapin’s approach 170

Design by objectives 173
Problem analysis diagram 176
Higher order software 178
Information hiding 179

META stepwise refinement 182
Program design language 184
Summary 186

References 190

Exercises 216
References 217

Chapter 11: Issues in Software Design
11.1 Practical issues in software design

11.2 Conceptual issues in software design

11.3 Summary 226

References 227

Epilegue 229

Index

pX) |

212

CONTENTS ix

*PARTI

SoftWarei Engineering and KD,evsign

CHAPTER 1: The Role of Software Design
: in Software Engineering -

CHAPTER 2: Defining Design

o PART I . |
.Software. Engineeﬂﬂg auu Destgn

Soﬁware Jes:gn technology is
“‘ a system — riot a secrel.
) -L. P

PRI

People have been writing computer progsams for less than two generations. Com«
pared to other engineering fields, the development of software is a newcomer to tech-
‘nology. But fledgling as it may be, it -has probably had:the greatest inapact on industriet
society sinee the invention of the steam engine. ‘Devices such as the steam engine were
labor savers for certain types of physical activities, and as such they had an effect-ori
how we viewed problems of- logistics, as well-as:on :the types-of :problems we ‘would

choose to address. The computer’s far broader scope of application :makes it a 'unigue .

asset in solving problems and evolving our view of the world.

Intuition might lead us to the conclusion that any field so important to other dis-

ciplines is, itself, a model discipline. Quite the contrary is true. Neither the subject of
software engineering nor that of software design is a widely recognized discipline. The
" first graduate program in software engineering at an American university was launched
only recently, with only a few' other universities considering such -action.* Worst of all,
software engineers do not even know who they are! At the Third International Confer-
ence on Software Engineering, I asked an audience of more than 700 attendees how
they had filled in the box marked ‘‘Occupation’’ on their income tax forms. By a show
of hands, less than 10 percent indicated ‘‘software engineer’’ or, simply, ‘‘engineer.”
Clearly, the discipline still lacks recognition even within its own ranks. This situation is
improving. At the Fifth International Conferénce on Software Engineering, 1 put the
same query to an audience of about 500, and approximately 25 percent responded
affirmatively — still not a majority, but a hopeful sign.

There are probably many contributing factors te the identity crisis suﬁ'ered by
software engineers. The two most prominent ones are the training of the people who

are doing software engineering; and, second, the nature of the products they build. To- .

*Seattle University in Seattle, Washington‘began offering a Master of Science in software engineering in the

fall of 1979.

4 SOFTWARE DESIGN: METHODS & TECHNIQUES

N

day, people who produce software come from many academic disciplines — not just sci-
ence, mathematics, and engineering. Many software developers who lack an engineer-
ing background think of engineering as an _exact discipline that produces formulated,
precise, closed-form solutions to problems. ' The inexactitude associated with software
design seems intolerable 10 many desmners. who feel hat if there Qﬂe a true engineer-
ing discipline for software, all estimating and’ scheduhng problems would go away. Ac-
‘tually, nothing could be further from the truth: Engineering depends as much or more
on common practice and empirical knowledge as it does on scientific fact. Hence, one
reason for the identity crisis is that many software engineers do not recogmze what they
are doing as engineering.

The second factor contributing to the identity crisis — the product — affects much
more than the self-image of softwage ’nﬂnw&. fin most other engineering fields, the
product is something that can be expgriernse by t - engineer: Its time frame and phy-
sical properties can be seen, touche&,g;ﬂdmeaﬁuwd by humans.

But software engineering deals’ ’l‘wanoth gy -fealm. This fact has had a profound
effect on our view of the acuvmei
many software des:gners who suppp 1311: _ead,,!br refinements and reviews in the
design of physncal systems, but who openly fesist the use of these common engineering
practlces 'in software systems development, viewing such practices as contractual nui-
sances. The difference in reference frame can affect our perception of engineering. Be-
fore ‘we can attempt a meaningful discussion of software design, we mus\ estabhsh a
working understanding of software engineéring and design.

- 1n Part 1, we will put software engineering and software design into perspecuve
First,-we will identify the scope, content, and structure of software engineering. Then,
we will examine software design from two standpeints: as it relateés to the 1arger dlSCl-
pline of software engmeenng. and asa dnscmhne in uself

of s6ftwéré development. Even today, there are

. 'The Role of Software Design .=~ -
- in Software Engineering.

,

iy

 Softivare engineering .
is at the interface

i

- o . SN)erweert theory dnd practice.

c S N
~Before we can begin to describe. meaningfully what seftware design is. we .need to
understand how it. relates to the.other activities associaied with. the -development (en-
gineering) of software. Many problems connected with software development, particu-
larly software design, are related to ignorance of the nature of the §ubiect rrea and of its.
-issues. A psychologist might call this phenomenon an identity crisis. Whatever you
" ehoose to call it,a crisis it very définitelyis. - 7 b B
Today, more than ever, sociéty: ‘rélies on software, not comiputers. How secure
would society be about the future if it were generally’ known'that this key element of
“progress was being developed by people -who Had tittie forimal traininig in“the software
‘crafts, had no accepted’ standards’ for practicing: this ‘science/art ‘form, dnd 'did "not evén .
recognizeé the field in which they were operating? L
One of the eatliest uses of the term *‘software éngineering'’ was in the naming of

“the first NATO Conferenice on-Softwar¢ Enginéering in ‘1968 [1]'."‘Tﬁi§ ‘toriference and
Jthe introduction of the term grew out'of concerns oni thé part of customefs and software
“professionals alike about the cost and quality ‘of the'software béing produced. These
concerns prompted the adoption of many methods and techniques, such as top-down
design. each promising to remedy some symptoms of the perceived problem. These
techniqués, however, were not based on the application 'of an engineering discipline to
‘the ‘production of software. - e T e e
"Although we havée come a long way toward remedying these cost and'quality prob-
fems; the tough part of the journey is still ahead. No'ioniger ate we ficed With téctinicgl
- .problems that can be quickly remedied with reasonably obvious ‘solutions (using design
and code reviews or restricting the use of GoTos, for example). Toddy’s salutions are
much more subtle, oriented toward remedying problems associated with the productioh
of systems, not individual programs. =~ e
“The term software engineering is used today to describe a loosely toupled collec-
tion of practices, techniques, and methods. More diverse than most other engineering
fields, it includes dctivities ranging from the {:oncépmallza'tion;of software /sizs’tgijfs

6 SOFTWARE DESIGN: METHODS & TECHNIQUES

through their implementation and delivery. - Mechanical engineers, for example, may.
design an aircraft component, but they are not responsible for producing the com-
ponent. Manufacturing engineers and.industrial engineers work on the latter task. In
software, by contrast, the same engineers often design and produce a component. -

We cannot hope to cure all of the ills of tHe industry in this book, but we can
develop a framework and perspéctive with which to treat more effectively the subject of
the remainder of this text. Specifically, the components of software engineering are or-
ganized into a model of the subject area in Section 1.3. ‘A working model of the
software development life cycle is presented, which describes the role and nature of
software design within the context of software engineering. This model sets the stage
for the more detailed sections on particular methads and techniques.

1.1 Scope

Software engineering literally encompams zﬂl activities associated with producing
software. The vastness of the topic ahd the fact that complex problems are being ad-
dressed by the practitioners of this art form have stifled attempts at describing its boun-
daries. But for the purposés of this treatment, the subject will include the spectrum of
activities from analysis of requirements to installation. Although our emphasis will be
on activities related to design, the role that design plays in the overall effort can be un-

derstood best if its relationship to software engineering is recognized.

1.2 A modeling approach

-Subject areas as diverse as software engineering have been organized in different
ways. For example, what mechanical engineering was thousands of years ago has
evolved into a collection of specialty areas such as civil engineering, hydraulics, and
heat transfer. Sofiware engineering has had less time to mature. - Hence, a natural
structure has not evolved. Even worse, the complexity of problems being addressed is
continually increasing, and consequently the state of the art is not yet well defined.

~ We could organize software engineering in various ways. For instance, we could
_ |dent|fy a specialization of skills for each phase of software development. Another al-
ternative would be to describe the functions performed by software engineers. We
could also describe their activities, the tools they use, and what they build. But do
these represent the basic or inherent properties that characterize the field?

One subject area that has had to deal with a similar sort of problem is biology,
which makes sense out of (organizes) the immense volume of knowledge about living¥
things. Take the case of plants: The great number of their characteristics — sueh” as
life span, method of reproduction, leaf size, shape, and preferred growmg conditions —
could give the person responsible for classifying them a nervous twitch. Fonunately,
' »blOlOngtS have successfully developed a scheme with which to organize plams and other
living things. Not a formal (mathematical) scheme, the approach is called morphologl-
cal analysis [2].

' Morphological analysns is extremely flexible in that it allows many dlﬂ'erent organi-
zational schemes to be tried until one that provides some worthwhile insight or
discovery is found. For example, the search for the so-called missing link was prompt-
ed, in part, by the use of an organizational scheme (or morphology) that characterized
the developmental stages of man. The morphology revealed that the changes between
stages seemed inordinately radical between two stages in particular. Hence, it was hy-
pothesized that there may well have been another, as yet undiscovered, stage between

