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SERIES EDITOR'S PREFACE

‘Et moi, ..., si j"avait su comment en revenir, One service mathematics has rendered the
je n'y scrais point aliel’ human race. It has put common sense back
Jules Verne where it belongs, on the topmost shelf next
. . to the dusty canister labelled ‘discarded non-
The series is divergent- therefore we may be sensc’.
able to do something with it. Eric T. Bell
O. Heaviside

Mathematics is a tool for thought A highly necessary tool m a world where both feedback and non-
linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for
other sciences.

Applying a simple rewriting rule to the quote on the right above one finds such statements as:
‘One service topology has rendered mathematical physics ..."; ‘One service logic has rendered com-
puter science ..."; ‘One sérvice category theory has rendered mathematics ...". All arguably true. And
all statements obtainable this way form part of the raison d'@re of this serics.

This series, Mathematics and Its Applications, started in 1977. Now that over one hundred
‘volumes have appeared it seems opportune to reexaminé its scope. At the time 1 wrote

“Growing specialization and diversification have brought a host of monographs and
textbooks on increasingly specialized topics. However, the ‘trec’ of knowledge of
mathematics and wselated ficlds does not grow orly by putting forth new branches. It
also happens, quite oftcn in fact, that branches which were thought to be completely
disparate are suddenly seen to be related. Further, the kind and level of sophistication
of mathematics applied in various sciences has changed drastically in recent years:
measure theory is used (nom-trivially) in regional and theoretical economics; algebraic
geometry interacts with physics; the Minkowsky lemma, coding theory and the structure
of water meet one another in packing and covering theory; quantum fields, crystal
defects and mathematical programming profit from homotopy theory; Lie algebras are
relevant to filtering; and prediction and electrical engineering can use Stein spaces. And
in addition to ‘this there are such new emerging subdisciplines as ‘cxperimental
mathematics’, ‘CFD’, ‘complelely integrable systems’, ‘chaos, synergetics and large-scale
order’, which are almost impossible to fit into the existing classification schemes. They
draw upon widely different sections of mathematics.”

By and large, all this still applies today. It is still true that at first sight mathematics seems rather
fragmented and that to find, see, and exploit the decper undc-lying interrelations more effort is
needed and so are books that can help mazhematicians and scientists dn so. Accordingly MIA will
continue to try to make such books available.

If anything, the description 1 gave in 1977 i1s now an understa ement. To the examples of
interaction areas one should add string theory where Rieriann surfaces, algebraic geometry, modu-
lar functions, knots, quantum field theory. Kac-Moody algebras, montirous moonshine {and more)
all come together. And to the examples of things which can be usefully applicd let me add the topic
finite geometry”, a combination of words which sounds like it might not even exist, let ulone be
applicable. And yet it is being applied: to statistics via designs, to radar/ sonar detection arays (via.
finite projective planes), and to bus connections of VLSI chips (via differcnce sets). There seems to
be no part of (socalled pure) mathematics that is not in immediate danger of being applicd.  And,
accordingly, the applied mathematician needs to be aware of mvich more. Besides analys:s and
numerics, the traditional workhorses, he may need all kinds of combinatorics, algebra, probability,
and so on.

In addition, the applied scientist needs 1o cope increasingly with the nonlincar world and the
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extra mathematical sophistication that this requires. For that is where the rewards are. Linear
models are honest and a bit sad and depressing: proportional efforts and results. It is in the non-
linear world that infinitesimal inputs may result in macroscopic outputs (or vice versa). To appreci-
ate what I am hinting at: if electronics were linear we would have no fun with transistors and com-
puters; we would have no TV, in fact you would not be reading these lines.

There is also no safety in ignoring such outlandish things as nonstandard anaiysis, superspace
and ant:commuting integration, p-adic and ultrameiric space. All three have applications in both
electrical engineering and physics. Once, complex numbers were equally outlandish, but they fre-
quently proved the shortest path between ‘real’ resuits. Similarly, the first two topics named have
already provided a number of ‘wormhoic’ paths. There is no telling where all this is leading -
fortunately.

Thus the original scope of the series, which for various (sound) reasons now comprises five sub-
series: white (Japan), yellow (China), red (USSR), blue (Eastern Europe), and green (everything
else), still applies. It has been enlarged a bit to include books treating of the tools from one subdis-
cipline which are used in others. Thus the series still aims at books dealing with:

- a central concept which plays an important role in several different mathematical and/or
scientific specialization areas;

new applications of the results and ‘deas from one arca of scientific endeavour into another;
influences which the results, problems and concepts of one field of enquiry have, and have had,
on the development of another.

The Klein-Gorcon and the Dirac equations are the basic equations of relativistic quantum: mechan-
ics and they are of fundamental importance. Until the early seventies only about a dozen external
magnetic fields were known for which exact solutions could be written down. Now there are hun-
dreds, thanks mainly to significant advances in the theory of separation of variables and the closely
related theory of symmetries of partial d'fferential equations.

This unique book systematically treats all these solutions and the general theory behind them.

The shortest path between two truths in the Never lend books, for no one ecver returns

real domain passes through the complex
domain. :
J. Hadamard

Ls physique ne nous donne pas sculement
l'occasion de resoudre des problémes .. clie
7ous faii pressentir la solution.

H. Poincarc’

Bussum, January 1990

them; the only books I have in my lbrary
are books that other folk have lent me.
Anatole France

The function of an expert is not 10 be more
night than other peopie, but 10 be wrong for
more sophisticated reasons.

David Butler

Michiel Hazewinkel



Contents

Introduction : 1
Chapter 1.

General properties of solutions of the Klein-Gordon and Dirac.
equations : . : oo T
1 Basic notations and equations ........... et sesiieanasreratasoneneos 7

2" Some properties of the Dirac matrices, scalar product of relativistic wave
functions and transformation laws ...............c.c.coiiini... 13

3 On relations between solutions of the Dlrac

and Klein-Gordon equaf.lons e EETTR SR 28
4 Spin operators for the Dirac equation .....................ciui.l. 32
Chapter 2. ‘ ‘
Most important exactly soivable problems in relativistic quantum
mechanics 43
5 Free relativistic particle. §1 ... ... . e 43
6 Motion of charge in a constant

and homogeneous magnetic field. §2 .................... ... ..., 49
7 Motion of charge in the plane-wave electromagnetic field. §3 ........ 61
8 Solutions in spherically symmetric fields. §4 ........................ 67
Chapter 3.
Exact solutions of relativistic equations of inotion in external
fields of special ¢configuration 75

9 General properties of motion of an electron in a
crossed electromagnetic field ... ... ... .. ... L. 77



vili CONTIN S

10 Electron in crossed stationary electromagnetic fields. §§5 -7 .... .89

1. Exact solutions for a charge in
nonstationary crossed fields. §§8 — 19 ................ ..o .l 87

12 Charge motion in longitudinal electromagnetic fields. §§20 — 25 .. 103

18 Electron motion in a combination of crossed
and longitudinal fields. §§26 — 39 ..................ociill .. 110

14 'Exact solutions in the fields of ,
nonstandard structu-e. §§40 —43 ... . ... ...l 144

-

(.'haptmr 4.
. Green’s functions of relativistic wave equations in external
eles ovagnetic felds 157

45 Intraduciion L. L oo, Neeneeaaan e eereete e, 157

16 Proger-time solution of equations for the Green’s functions in
a constant field and in a combination of the latter with
aplane-wave flerd Lo 161

17 Solutions and evolution functions of the Klein-Gordon
and Dirac equations in a constant field and in its combination with
aplancweve field Lo oL, # .................... 170

Chapter 5,
Coherent +tates of relativistic particles 181

18 fntroduction ..... v S APPSR ¢ 3 |

19 Cohereat states of relativistic particles that move in an external
electromagnetic field ... ... ... ... Ll et eaieraeereaeaaa, 185

Chapter 6.
Charged particles in a quantized plane—wave field ‘ 194



CONTENTS ) ' AN

20 Basic equations and their interpretation ............. .. ... ... 194
21 Separation of the spin variables in the Dirac equation ............ 199
22 Separation of the spatial and photon variables. Conserved .
energy-momentum operator of the system .......... e e 201
23 Charge in quantized field of a monochromatic plane wave with arbitrary
polarization ....«..iiiieiiiiiiiiiiii i e 205
24 Decompodition in linear polarizations for a quantized wave with
arbitrary spectral composition and polarization ............ L.+ 209
25 Cananical forms of the Hamittonian for quantized wave
of general form ... o i e e 212
26 Coordinate representation. Reduction of the Hamiltonian to the
canonical form in the coordinate representation .......... P 225
27 Stationary States ....... .iier tieriiinieritiiiiie e e 227
28 Relations of orthogonality, normalization and completeness ....... 231
29 Integrals of motion. Coherent states .................... ... ... 233
30 Relation between the Volkov solutions and the wave functions 1n a
. quartj-ed plane-wave field .................. ... ... .235
81 The -Green’s functions of the Klein-Gordon and Dirac equations in a
quantized plane-wave field ....................... ... ..., 237
32 Charge in the quantized plane-wave field combined with a classical
electromagnetic field ........... ... ... . i Ll 240
Chapter 7.
Exact solutions of Dirac-Pauli equations 249

33 The Dirac-Pauliequation ........................ ... ... ....... 249



X CONTENTS
34 A charged particle with the anomalous moments in a constant and

homogeneous magnetic field ............ e 251

35 Exact solutions of the Dirac-Pauli equation for a particle in a plane
electromagnetic wave field ................. ... il 2531

36 Solution of the Dirac-Pauli equation in a plane-wave field combined

with a longitudinal running electric field ....................... 258
Appendix I
Exact solutions of the one-dimensional stationary Schrodinger
equation ................... e 260

Appendix II

Systems with quadratic Hamiltonians.................. I 289

References ... 299

Subject Index 323
~ 4



[ntroduction

The relativistic wave equatic ns of Dirac and Kiein-Gordon describing
the motion of an electric charge in a.1 external electromagnetic field provide
a basis for relativistic quantum mechanics and quantum electrodynamics
of spinor and scalar particles. There are many reasons why exact solutions
of these equations are of special physical interest. In relativistic quantum

. mechanics, the Dirac and Klein-Gordon equations are referred to as one-
particle wave equations of motion for fermions and bosons in an external
electromagnetic field: their solutions describing the motion [1]. In quan-
tum electrodynamics, exact solutions of these equations make it possible
to develop the perturbation expansion known as the Furry picture which
incorporates the interaction with the external field exactly, while treating
the interaction with the quantized photon field perturbatively [2 - 4]. In
particular, all propagators of a particle, i.e., the various Green’s functions,
are constructed in a certain way by using exact solutions of the Dirac and
Klein-Gordon equations.

One of the basic equations of relativistic quantum theory, the Klein-
Gordon equation, was known already to Schrddinger [5]. The final form
of the scalar relativistic-covariant wave equation was independently estab-
lished in [6 - 10, in which its properties were also discussed. These works
appeared almost simultaneously and independently. For this reason, it is
impossible to allocate a sufficiently short name to this equation which would
do justice to all of its authors. The most widespread, although not the most
historically adequate, is the name “Klein-Gordon equation.”

The equation which most exactly describes the motion of electrons was
given by Dirac [11, 12} and bears his name.

The physically most important exact solutions of these equations were
obtained and analysed in the early years of relativistic quantum-theory.

: S 1



2 INTRODUCTION

These are the solution for an electron in a Coulomb field {5, 11, 13 - 15}, a
uniform magnetic field {6~ 20}, the field of a plane wave {21, 22| and some
simple one-dimensional electric fields |20, 23, 24].

During the subsequent three decades, only one solution of the Dirac and
Klein-Gordon equations was found, namely, that for a charge placed in the
field of a magnetic monopole [25]. Beginning in the mid-sixties however,
new works appeared related to the search for new exact solutions. Such
solutions were found: for an electron in the field of a plane wave combined
“with a uniform magnetic field parallel to the direction of wave propagation
(the Redmon field) [26]; for an electron in some non-uniform fields [27 - 33;
the stationary solution in constant and homogeneous electric and magnetic
fields that are equal in magnitude and mutually orthogonal (crossed fields)
[34 - 37]; and in the field of a wavé with an isotropic 4-potential [38].

In the early seventies about a dozen external electromagnetic fields were
listed for which exact solutions of the Dirac and Klein-Gordon equations
had been determined. However, no general method for finding such solu-
tions was available.

This situation changed significantly after works appeared in which the
problem of list'ng all external fields that allow a complete separation of
variables in the Dirac {39, 40| and Klein-Gordon [41, 42| equations was
solved. These investigations were possible following an essential advance in
the theory of separation of variables in second-order differential equations
and systems of first-order differential equations [39 - 46|.

Solving the Dirac or Klein-Gordon equation means either solvihg the
Cauchy problem, i.e., finding the wave function at any instant in time
using the data given at an initial time, or determining the complete system
of solutions that are, simultaneously, eigenfunctions of a complete set of
operator-valued integrals of motion. Most of the solutions known belong
to the lgtter type. ’

It is known that for the Klein-Gordon equation the complete set con-
tains three operator-valued integrals of motion. These three integrals of
motiorr usually have direct classical analogues which makes the parallel so-
lution of the corresponding classical problem especially interesting. For
the Dirac equatien, the complete set contains four integrals of motion,
witlr at least one not admtting the classical interpretation (the so-called
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spin operator-valued integral of motion). All operators of the complete set
should commute among themselves and with the operator of the equation
and be functionally independent. The method of separation of variables

~ contains in itself the finding of complete sets of integrals of motion (to be

more precise, of complete sets of symmetry operators' that are also inte-
grals of motion). It should be mentioned that all known exact solutions of
the Dirac and Klein-Gordon equations were obtained for fields belonging
to the class found in [41].

The explicit determination of all fields allowing separation of variables
opened wide possibilities for finding new exact solutions of the Dirac and
Klein-Gordon equations. At present, hundreds of such solutions are known.
A need has arisen to review, at least briefly, the knov. 1 solutions, to em-
phasize their common features, and to distinguxsh‘thrir peculiarities. This
is the task we try to fulfill in the present book.

The second and third chapters of the book collect the now known exact
solutions of the Dirac and Klein-Gordon equations which can be expressed
as combinations of a finite number of elementary and higher transcendental
functions. We have chosen to classify the solutions according to the type of
external fields involved. This means the following For many external fields
(e.g. the plane-wave or homogeneous magnetic field) different complete
systems of solutions are known, depending on different choices of the sets
of integrals of motion. For the homogenegus magnetic field, for example,
there are various complete systems of solutions, widely used in the literature
and presented also in this book. They derive from separatjon of variables
performed in Cartesian and cylindrical reference frames. There are also the
coherent states and some other more special complete systems. However, it 1
is not our intention to list for every given field all the complete : ystems of
solytions ever described in the literature. Our purpose has been to indicate
all the external electromagnetic fields allowing exact solutions of the Dirac
or Klein-Gordon equations and to present at least one complete system of
solutions for each such field. The physically most important and most often
used solutions are presented in Chapter 2.

It is quite clear that once an exact solution of a relativistic-covariant

! A symrnetry operator of a given equation is an operator that maps every solution of
this equation into a solution of the same equation. Details may be found in {40 - 46].
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equation of motion is known for a certain external field, its solution is
therefore known for the whole class of fields obtained from the given field
by Loreniz transformations. In every case, we have chosen the simplest’
representative from a given class of fields. We have done our best to cite
origina. papers wherever possible, although we have not always mentioned
complementary results which have appeared later.

It should be noted that, in general, solving the Dirac equation does not
always reduce 10 solving the Klein-Gordon equation for the same electro-
magnetic field. (The class of fields for which a connection between solutions
of these equations is established is described in section 3 of Chapter 1.)

Nevertheless, in most cases, whenever an explicit solution of the Klein-
Gordon equation is known, one succeeds in finding the explicit solution of
the Dirac equation, too. This ohservation is not only confirmed in the three
known cases [47], described later (§§ 37 - 39). The following statement is
also true: if the Klein-Gordon equation allows, for a certain electromagnetic
field, complete separation of variables, then the solution of the classical
Lorentz equations can be réduced to performing quadratures; the classical
action can be found as a quadrature, as well. In view of these facts, for
every class of electromagnetic fields considered, we present, in succession,
solutions of the classical Lorentz and Hamilton-Jacobi equations, and then
of the Klein-Gordon and Dirac equations. As far as the latter two are
concerned, we present their complete systems of solutions in Chapters 2 and
3. Exact solutions of the classical problem are of independent value; they
are also useful in quantum theory, e.g. for the interpretation of integrals of
rotion. '

The reader who may only be interested in the solution for a special elec-
tromagnetic field is advised to acquaint himself not only with the text that
relates directly to this solution, but also to consult the beginning of the
corresponding chapter and section since, as a rule, in that place notations
that are to be used specifically for a given chapter and section are i..*ro-
duced, and other information that belongs to the case under consideration
is given.

Apart from the division of the book into numbered chapters and sec{
tions, that part of the text relating to finding exact solutions is indicatec
by specific, separate texts: each corresponding to a special solution. Thesq
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texts are numbered throughout the book as § 1, § 2, etc., and are also
indicated in the Table of Contents.

Within each of these specific texts the solution of the Klein-Gordo.a and
Dirac equations is usually reduced to solving a one-dimensional station-
ary Schrodinger equation with a certain potential. Therefore, in order to
avoid repetition, all the known solutiors of the one-dimensional station-
ary Schrodinger equation and all the potentials that allow solutions of this
equation are listed at the end of the book in Appendix 1. and we refer to
this Appendix when presenting the final results. A

The contents of Chapters 4 - 6 relate closely to the main text concern-
ing exact solutions of relativistic wave equations in external electromagnetic
fields. In Chapter 4, exact solutions of these equations for the Green’s func-
tions are given. Special Green’s functions are presented for the physically
most interesting case of the constant electromagnetic field combined with
the plane-v ave field. In Chapter 5, we consider exact coherent state solu-
tions of the Dirac and Klein-Gordon equations in an electromagnetic field.
The fruitfulness of the use of coherent states in, e.g., electrodynamics and
optics, is well-known; the Green’s functions in an external field, as pointed
out above, are the main building blocks of the perturbation expansion with

" respect 10 the radiative interaction in quantum electrodynamics. (Detailed
reviews of the literature relating to Chapter 4 and the subsequent two
chapters can be found in the introductions to these chapters.)

Chapter 6 is concerned with exact solutions of the Dirac and Klein-
Gordon equations with an operator-valued electromagnetic potential, which
represents the plane-wave quantized electromagnetic field. From the point
of view of quantum field theory this equation describes the model prob-
lem of the interaction of a charge with the quantized electromagnetic field
of photons having collinear momenta. Censideration of this problem is
interesting because few exactly solvable models in quantum field theory
exist. Although the models under consideration do not directly relate to
any physical reality, their exact solution advances our understanding of the
mathematical structure of the theory and serves to illustrate general ideas.
For instance, in the classical limit with respect to the electromagnetic field,
the solutions of the problem discussed turn into solutions of the Dirac and
Klein-Gordon equations in an external plane-wave field — the Volkov solu-
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tions - but are more general than the latter since they incorporate. albeit
in a model way, the backward influence of the motion of the charge on the
plane-wave field itself. These solutions give, moreover, the possibility of
calculating some actual miany-photon effects of quantuin electrody namics.

In the last chapter, Chapter 7, we present exact solutions of the ex-
tended Dirac equation, which takes into account the fact that spinoy par-
ticles have anomalous magnetic and electric moments. A consistent treat-
ment of the anomalous magnetic moment of an electron is possible only
within the scope of quantum electrodynamics (QED), wheress the anoma-

~ lous electric moment requires for its description a quant.im field mode! with

parity nonconsetvation. Nonetheless, the extended Dirac equation under
consideration may be given an approximate theoruticgl foundation within
QED, as well as a phenomenological justification, and is used as the sim-
plest approximation for describing the influence of the anomaious moments
on the physical parameters of various procrsses. We also indicate here all
the external electromagnetic fields that enable one to obtain solutions of
the ~xtended Dirac equation, and we present (of the many possible) one
complete system of such solutions for each field. ’

It is hoped that this book will be of interest to specialists in the fields of
quantum mechanics, field theory, and mathematical physics. We hope that
the book will also provide a new stimulus to investigations of, and searches
for, exact salutions of the relativistic wave equati..ns and related equations
of mathematical physics.

In cc.iclusion, the authors wish to use this opportunity to express their

. gratitude to their colleagues and students who participated in discussions
of the material presented. o



. Chapter 1
- GENERAL PROPERTIES OF .
SOLUTIONS OF THE KLEIN-GORDON
. .. -AND DIRAC EQUATIONS

I

1 Basxc notatxons and equations

-

}u ( artesian coordinates of space—tlme points are denoted by z“ = (z z!,
o,0% (et 1,y,2) = = (2°,7), where c is the speed of light. In this frame,
the metric tensor . _ s ‘ '

B Nw = diag(l,-1,-1,-1).. (L1
" The summation convention over repeated sub- and super- scripts is a.,s-

swined throughiout, unless otherwisc explicitly stated. Contravariant vec-
“lous are oftm reprt*S( nted in the form a* = (a°,a), and

R

L e e = (). .(1.2).‘

The clectrbmagnetlc field tensor Fy and the field strengths E and H '
ar¢ expressed in terms of the electromagnehc field potenhais .R,. in the
‘standard-way:

Foo = 0,4, - 3,4,

S E = -Vdo- 4, T (13

CH = [VA] |

w}" lr"“““ V - N
eset B 3 - . s
O > o )
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throughout.
In what follows, the matrix F'(a,b) will be useful:

0 a' ot &

r —-a! 0 - ) b? .
-a® b 0o - |’
. —a® b B 0

(1.5)

where @ and b are three-dimensional vectors given: by theit Cartesian tom-
ponents. The Cartesian components of the tensors F,, and F*” can then
be written as

F,, = F(E,H), F* = F(-E,H), (1.6)

where g is the number of the row, and v that of the column.
The matrix transpose of A will be denoted. by A7.
The (pscudojtensor dual to a tensor T#” will be denoted by T"#", -

. 1
T‘“” = EC”vaTaﬂ (1.7)
where %25 is the completely antisymmetriz unit pseudotensor, "2 = 1.

From (1.7) and (1.6) one obtains for the dual pseudotensor of the elec-
tromagnetic field:

F* = _F(H,E),
F., = ‘F(H,~E). (1.8)

The clectromaguetic field invariants have the form

i
11 = :l);.l’—"‘vl?”v—"-1112 - E2,
o= F,F* = (EH). (1.9)

As noted abave, we are geing to concentrate on the search for exact
solutions of the Loreatz, Klein-Gordon and Dirac equations. We will list
thiese cquations, as well as those of Maxwell and Hamilton-Jacobi, below.
In doing so, we refer to the Gauss system of units, with e being the algebraic



