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PREFACE

This monograph is a collective work. The names appear-
ing on the front cover are those of the people who worked on
every chapter. But the contributions of others were also
very important:

C. Risito for Chapters I, II and 1V,
K. Peiffer for I1III, 1V, VI, IX

R. J. Ballieu for I and IX,

Dang Chau Phien for VI and IX,

J. L. Corne for VII and VIII.

The idea of writing this book originated in a seminar
held at the University of Louvain during the academic year
1971~-72. Two years later, a first draft was completed.
However, it was unsatisfactory mainly because it was ex-
cessively abstract and lacked examples. It was then decided
to write it again, taking advantage of some remarks of the
students to whom it had been partly addressed. The actual
text is this second version.

The subject matter is stability theory in the general
setting of ordinary differential equations using what is
known as Liapunov's direct or second method. We concentrate
our efforts on this method, not because we underrate those
which appear more powerful in some circumstances, but because
it is important enough, along with its modern developments,
to justify the writing of an up-to-date monograph. Also
excellent books exist concerning the other methods, as for
example R. Bellman [1953] and W. A. Coppel [1965].

Liapunov's second method has the undeserved reputation

of being mainly of theoretical interest, because auxiliary
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functions appear to be so difficult to construct. We feel
this is the opinion of those people who have not really tried.
Indeed, many mathematicians have tackled only theoretical
problems. On the other hand, too many of those involved in
applications are unaware of the useful theorems or are
victims of the myth of the elusive Liapunov function. Our
aim, in writing this book, has been twofold: to describe the
present state of the most useful parts of the theory, and to
appeal to the practical man with a wealth of applications
taken from many varied fields.

Chapters I and II constitute an elementary self-contained
treatment of stability theory. They should normally be read
first. Almost every other chapter can be studied without
further prerequisite, except that some definitions or
propositions of Chapter VI are needed in Chapters VII, VIII,
and IX. The whole of Chapter VI is used in Section IX.6.

We are also grateful to M. Everard, S. Spinacci and
Kate MacDougall for their particularly expert typing of
successive versions of the manuscript. Finally, it is a
pleasure to acknowledge the financial support of this work by

"Fonds National de la Recherche Scientifique”.

Louvain-la-Neuve, October, 1975



SOME NOTATIONS AND DEFINITIONS

This books requires a familiarity with some basic
concepts from the theory of ordinary differential equations.
As a general rule we have used symbols which are common place
in mathematics. Let us however point out the following

notations:

X, the set of real numbers,

éi the extended real number system,

a >0, a is a positive real number,

a > 0, a is a strictly positive real number,

[a,b], closed interval,

la,bl, open interval,

(a|b) or a’b, according to context, scalar product in @7,

||x]|, norm of point x in %",

d(x,M) = inf |[x-y||, distance from x € #" to M C #",
yeM

B = {x € @, l1x]] < €}, open ball with center at the origin

and radius ¢ > 0,

B(a,e) = {x € @, ||x-a|| < e}, open ball with center
a € #% and radius e > 0,

B(M,e) = {x € @, d(x,M) < €}, € - neighborhood of the set
M C #",

M_ = B(M,e) M Q, € - neighborhood of M € #@" with respect
to o C #",

E, unit n x n matrix,

x = g% , time derivative of the function x: A C & » %7,

of . . . . n m

3% ! jacobian matrix of the function f: # > #, x +~ £(x),
+

J , see p. 7,

#, see definition p. 12.
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VX, universal quantifier; read "for all x" or "given x",
3x, existential quantifier; read "for some x" or

"there exist x".

For general concepts on differential equations which
are not defined in this text we refer to Ph. Hartman [1964],
E. Coddington and N. Levinson [1965] or N. Rouche and

J. Mawhin [1973]. The following definitions might be useful.

Let A C# and f: A > #, x - £(x) be a real

valued function.
The function £ is said to be:

increasing if Vx € A, Vy €A, x <y implies f(x) < £(y);
i.e., for all x and y in A, x <y implies f(x) < f(y).

gtrictly increasing if Vvx € A, vy € A, x < y implies

£(x) < £(y),
decreasing if Vx € A, vy € A, x <y implies f(x) > £(y),

strictly decreasing if Vx € A, vy €A, x < y implies

f(x) > f(y),

monotonic if it is increasing on A or decreasing on A.

Let a € A, the extended closure of A. Then the limit

superior (upper limit) of f at a is

lim sup £(x) = inf{sup{f(x): x €B(a,s), x # al} € R.
x+a §>0

Similarly the limit inferior (lower limit) of f at a is

lim inf £(x) = sup{inf{f(x): x € B(a,s), x £ a)} € X.
X+a >0

If a €A, the function f 1is said to be lower semi-

continuous at a if 1lim inf £(x) > f(a). If
X+
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lim sup £(x) < f(a), the function £ is said to be upper
x>a

semi~-continuous at a. It is easy to verify that a function

£ is continuous at a if and only if it is lower and upper

semi-continuous at a.

A function V: 5?1+n > H, (t,x) -~ V(t,x) is said to

be positive definite (with respect to Xx) if there exists a

function a € % such that

(1) v(t,0) 0

(ii) v(t,x) > a(||x]]).

If -~V is positive definite, the function V is said to be

negative definite (with respect to x). If V(t,0) = 0 and

v(t,x) > 0 the function V is said to be positive semi-
definite (with respect to x). A function V: gl R,

(t,x,y) > V(t,x,y) is said to be positive definite with

respect to x if for some function a € %

(1) Vv(t,0,0) 0

(i1) v(t,x,y)

v

atf[x[.

An important class of positive definite functions are the

positive quadratic forms

Vix) = xTAx

where A 1is a symmetric positive definite matrix (T denotes

transpose) .
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CHAPTER I

ELEMENTS OF STABILITY THEORY

The first two chapters are of an introductory character.
0f the matters they exhibit, some have been known for a long
time, others belong to the last fifteen years. Almost all
will be considered over again in subsequent chapters, where
the results will be extended or deepened. However, the next
few pages are meant to give a fair idea of what stability and
Liapunov's direct method are. Further, they should prove
helpful to those concerned with simple practical applications.
Of course, the rest of the book has been written to cope with
less simple applications and, unfortunately or not, everyday

practice proves how numerous they are ...

1. A First Glance at Stability Concepts

1.1. The English adjective "stable" originates from the Latin
"stabilis", deriving itself from "stare", to stand. Its first

acceptation is "standing firmly", "firmly established". A
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natural extension is "durable", not to mention the moral
meaning "steady in purpose, constant". As it is, this con-
cept of stability seems to be clear and of good use in everyday
life. The layman might well wonder what reasons can be in-
voked to refine or complicate it. There are many, as we

shall see.

Very early, the stability concept was specialized in
mechanics to describe some type of equilibrium of a material
particle or system. Consider for instance a particle subject
to some forces and possessing an equilibrium point dq- The
equilibrium is called stable if, after any sufficiently small
perturbations of its position and velocity, the particle
remains forever arbitrarily near qgr with arbitrarily small
velocity. We shall not dwell on the well known example of a
simple pendulum, whose lowest position, associated with zero
velocity, is a stable equilibrium, whereas the highest one,
also with zero velocity, is an unstable one.

Pormulated in precise mathematical terms, this mechanical
definition of stability was found useful in many situations,
but inadequate in many others. This is why, with passing
years, a host of other concepts have been introduced, each of
them more or less related to the first definition and to the
common sense meaning of stability. They were created either
for definite technical or physical purposes, or for reasons
of symmetry or completeness of the theory, or else to suit the
fancy of their inventors. Later in this book (Chapter VI),

we shall try, with much care, to separate the wheat from the

chaff.
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1.2, As contrasted with mechanical stability, the other con-
cept known as Liapunov's stability has the following features:
first, it pertains no more to a material particle (or the
equations thereof), but to a general differential equation;
second, it applies to a solution, i.e., not only to an
equilibrium or critical point.

Let

x = £(t,x), (1.1)

where x and f are real n~vectors, t is the time (a real
variable), f is defined on # x %" and % = dx/dt. We
agsume f smooth enough to ensure existence, uniqueness and
continuous dependence of the solutions of the initial value
problem associated with (1.1) over # x #". For simplicity,
we assume further that all solutions to be mentioned below
exist for every t € #. Let ||+|| dJesignate any norm

on X",

A solution x(t) of (1.1) is called stable at t., or,

0’

more precisely, stable at t = t0 in the sense of

A.M. Liapunov [1892] if, for every ¢ > 0, there isa § > 0

such that if x(t) is any other solution with

]|x(t0) - E(to)[( < &, then |[|x(t) - x(t)|| < ¢ for all

t > t,. Otherwise, of course, x(t) is called unstable at

to.
Thus, it turns out that stability at t0 is nothing

but continuous dependence of the solutions on Xg = x(to),

uniform with respect to t & [to,m[.

1.3. Exercise. Prove that stability at to implies stability

at any other initial time (usually with different values for §).
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Hint: wuse the fact that, if x(t;to,xo) is the solution

passing through X at t then the mapping

0'

X(t;to,-): Xy x(t;to,xo)

is a homeomorphism; i.e., it and its inverse are one to one

and continuous.

1l.4. We may gain some geometrical insight into this stability

concept by considering again a pendulum, whose equation is

&+ wzsin x =0, with x and w € . This second order

equation is equivalent to the first order system

X

]

Yy

2 .
Yy = -u sin x.

As is well known, the origin of the (x,y)~plane is a center,
i.e. all the solutions starting near the origin form a family
of non-intersecting closed orbits encircling the origin.
Given € > 0, consider an orbit entirely contained in the
disk B€ of radius € with center at the origin. Further,
choose any other disk Bd of radius §, contained in this
orbit. Clearly, every solution starting in By at any
initial time remains in B_. This demonstrates stability of
the origin for any initial time.

On the other hand however, any other solution corre-
sponding to one of the closed orbits is unstable. 1In fact,
the period of the solution varies with the orbit and two
points of the (x,y)-plane, very close to each other at t = tO’
but belonging to different orbits, will appear in opposition
after some time. This happens however small the difference

between periods. But it remains that, in some sense, the

orbits are closed to each other. Similar examples led to a
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new concept called orbital stability, to be discussed later

in this book, in connection with the stability of sets of

points.

1.5. To say a little more about possible variations on the
theme of stability, notice that in the case of the pendulum,
the equilibrium x = y = 0 is such that no neighbouring
solution approaches it when t - «, as it would do if some
appropriate friction were present. In many practical situa-
tions, it is useful to require, besides mere Liapunov
stability of a solution x(t), that all neighbouring solu-
tions x(t) tend to xX(t) when t » «, This leads to the

notion of asymptotic stability.

1l.6. Many other examples can illustrate the necessity of
creating new specific concepts. The last one to be mentioned
here will be borrowed from celestial mechanics. Following
common sense, the solar system is called stable if it is
"durable" (cf. 1l.1), i.e. if none of its constituent bodies
escapes to infinity, and further if no two such bodies meet
each other. But the velocities are unbounded if and only if
two bodies approach each other. Therefore, stability in

this sense (it is called Lagrange stability), simply means

that the coordinates and velocities of the bodies are bounded.
Boundedness of solutions thus appears as a legitimate and
natural type of stability.

In the next section, we introduce a small number of

definitions, in fact the most widely used and studied.



