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PREFACE

An advanced course in classical mechanics has long been a time-honored
part of the graduate physics curriculum. The present-day function of such
a course, however, might well be questioned. ft introduces no new physical
concepts to the graduate student. It does not lead him directly into
current physics research. Nor does it aid him, to any appreciable extent,
in solving the practical mechanics problems he encounters in the lahoratory.

Despite this arraignment, classical mechanics remains an indispensable
part of the physicist’s education. It has a twofold role in preparing the
student for the study of modern physics. First, classical mechanics, in
one or anather of its advanced formulations, serves as the springboard
for the various branches of modern physics. Thus, the technique of
action-angle variables is needed for the older quantum mechanics, the
Hamilton-Jacobi equation and the principle of least action provide the
transition to wave mechamcs, while Poisson brackets and canonical trans-
formations are invaluable in formulating the newer quantum mechanics.
Secondly, classical mechanics affords the student an opportunity to master
many of the mathematical techniques necessary for quantum mechamcs
while still working in terms of the familiar concepts of classical physics.

- Of course, with these objectives in mind, the traditional treatment of
the subject, which was in large measure fixed some fifty years. ago, is no
longer adequate. The present book is an attempt at an exposition of
classical mechanics which does fulfill the new requirements. Those
formulations which are of importance for modern physics have .received
-emphasis, and .mathematical techniques usually associated with quantum
mechanics have been introduced wherever they result in increased elegance
and compactness. For example, the discussion of central force motion
has been broadened to include the kinematics of scattering and the cla,sswa,l
solution of scattering problems. Considerable space has been devoted to
canonical transformations, Poisson bracket formulations, HamlltonJa.cobl
theory, and action-angle variables. An introduction has been prov:ded to
- the variational principle formulation of continuous systems and fields. As
‘an illustration of the application of new mathematical techniques, mgld
body rotations are treated from the standpoint of matrix transformations.
The familiar Euler’s theorem on the motion of a rigid body can then be
presented in terms of the eigenvalue problem for an orthogona,l matrix.
As a consequence, such diverse topics as the inertia tensor, Lorentz trans-
formations in Minkowski space, and resonant frequencies of small oscilla-

tions become capable of a unified mathematical treatment.. Also, by this
vii
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technique it becomes possible to include at an early stage the difficult
concepts of reflection operations and pseudotensor quantities, so impertant
in modern quantum mechanies.. A further advantage of matrix methods
is that “spinors” can be introduced in connection with the properties of
Cayley-Klein parameters.

Several additional departures have been unhesitatingly made. All
too often, special relativity receives no connected development exoept
as part of a highly specialized course which also covers general relativity.
However, its vital importance in:modern physics requires that the student
be exposed to special relativity at an early stage in his education. Aceord-
ingly, Chapter 6 has been devoted to the subject. Another inmovation
has beén the inclusion of velocity-dependent forces. Historically, claasical
mechanics developed with the emphasis on static forces dependent on posi-
tion only, such as gravitational forces.. On the other hand, the velocity-
dependent. electromagnetic force is constantly encountered .in: modern
physics. . To enable the student to handle such forces as early as possi-
ble, -velocity-depéndent potentials. have been included in the struoture, of
mechanics from the outset, and have been consistently developed through-
out the text. S '

Still another new element has been the treatment of the mechanics of
continuous systems and fields in Chapter 11, and some comment on. the
choice of material is in order. Strictly interpreted, the. subject could
include all of elasticity, hydredynanrics, and aeoustics,. but these topics
lie outside the prescribed scope of the book, and adequate treatises have
been written for most of them. In contrast, no conneécted account is
available on the classical foundations of the variational principle formula-
tion of continuous systems, despite its growing importanee in ‘the: field
theory of elementary particles. The theory of fields csh be carrisd to
considerable length and complexity before it -is necessary to introduce
quantization. For example, it is perfectly feasible to discuss the Stress-
energy tensor, microscopic equations of continuity, momentum space
representations, etc., entirely within the domain of _classical physics. It
was felt, however, that an adequate discussion of these ‘Mabjects would
require a sophistication beyond what could’ naturally be. expected of the
student. Hence it was decided, for this edition at least, to limit Cliapter 11
to an elementary description of the Lagrangisn and Hamiltonian formula-
tion of fields. =~ =~ ‘ : , o '

The course for which this text is designed normally carries with it a
prerequisite of an intermediate course in mechanics. For both the in-
adequately prepared graduate student (an all too fréquent occurrence)
and the ambitious senior who desires to omit the intermediate step, an
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effort was made to keep the book self-contained. Much of Chapters 1
and 3 is therefore devoted: to material usually covered-in the- preliminary
courses. .

With few exceptions, no- more. mathematical background is required of
the student than the customary undergraduate courses in advanced caleulus
and vector analysis.. Hence considerable space is given to developing
the more complicated mathematical: tools. as they are needed. An ele-
mentary acquaintance with Maxwell’s equations and - their simpler con~
sequences is necessary for understanding the sections on electromagnetic
foroes. Most entering graduate. students have had at least one term’s
exposure to modern physics, and frequent advantage has been taken of
this circumstance to indicate briefly. the relation between a classical develop-
ment and its quantum continuation.

A large store of exercises is available in the literature on mechanics,
easily accessible to all; and there consequently seemed little point to
reproducing an extensive collection. of such problems. The exercises
appended to each chapter therefore have been limited, in the main, to.
those which serve as extensions of the text, illustrating some particular
point or proving variant: theorems. Pedantic museum pieces have been
studiously avoided. , ,

The question of notation is always a vexing one. It is impossible to
achieve a completely consistent and unambigueus system of notation that
is not at the samc time impractieable and vumbersome. The customary
convention has been followed of indicating vectors by bold face Roman
letters. In addition, matrix quantities of whatever rank, and tensors
other than vectors, are designated by bold face sans serif characters,
thus: A. An index of symbols is appended at the end of the.beok, listing
the initial appearance of each meaning of the impertant symbols. Minor
characters, appearing only once, are not included.

References. have been listed at the end of each chapter, for elaboration
of the material discussed or for treatment of points not touched on. The
evaluations accompanying these references are purely personal, of course,
but it was felt necessary to provide the student with some guide to the
bewildering maze of literature on mechanics. These references, along
with many more, are also listed at the end of the book. The list is not
intended to be in any way complete, many of the older books being de-
liberately omitted. By and large, the list contains the references used in
writing this book, and must therefore serve also as an acknowledgement of
my debt to these sources. i

The present text has evolved from a course of lectures on classical
mechanics that I gave at Harvard University, and I am grateful to Professor
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J. H. Van Vleck, then Chairman of the Physics Department, for many per-
sonal and official encouragements. To Professor J. Schwinger, and other
colleagues I am indebted for many valuable suggestions. I also wish to
record my deep gratitude to the students in my courses, whose favorable
reaction and active interest provided the contmumg 1mpetus for thls
work. p-abenn

Cambridge, Mass.
March 1950

HERBERT Gomsmm
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CHAPTER 1

SURVEY OF THE ELEMENTARY PRINCIPLES

The motion of material bodies formed the subject of some of the earliest
researches pursued by the pioneers of physics. From their efforts there
has evolved a vast field known as analytical mechanics or dynamics, or
simply, mechanics. In the present century the term “ classieal mechanics”
has come into wide use to denote this branch of physics in contradistinetion
to the newer physical theories, especially quantum mechanics. We shall
follow this usage, interpreting the name to include the type of mechs#nics
ariging out of the special theory of relativity. It is the purpose of this
book to develop the structure of classical mechanics and to outline some of
its applications of present-day interest in pure physics.

Basic to any presentation of mechanics are a number of fundamental
physical concepts, such as space, time, simultaneity, mass, and force.
In discussing the special theory of relativity the notions of simultaneity
and of time and length scales will be examined briefly. For the most part,
however, these concepts will not be analyzed critically here; rather, they

will be assumed as undefined terms whose meanings are familiar to the
reader.

1-1 Mechanics of a particle. The essential physics involved in the
mechanics of a particle is contained in-Newton’s Second Law of Motion,
which may be considered equivalently as a fundamental postulate oras a
definition of force and mass. For a single pa.rtxcle the correct form of the
law is: g

r=2 (1-1)
where F is the total force acting on the particle and p is the linear momentum
of the particle defined as follows: Let 8 be the eurve traced by the particle
in its motion, and r the radius vector from the origin to the particle. The
vector velocity can then be defined formully by the equation: ' ./ !

C_d
V»= az, . ' (1"2)
where the derivative is evaluated by the usual limiting process (cf. Fig. 1-1):
r_ ], Ronl T, 48 _ds

adoal T odt
1



2 SURVEY OF THE ELEMENTARY PRINCIPLES lenae. 1

(This last form for the derivative explicitly indicates that v is tangent to the
curve.) Then the linear momentum p is defined in terms of the velocity as

= mv, (1-3)
80 that (1-1) can be written
§ .
d
=~ (mv).- -4
e A dt,.(m)v‘ | (1-4)
" In most cases the mass of the particle
is constant and Eq. (1-1) reduces to:
v
vz F = m&—t = ma, | (1—‘5)
5 where a is called the acceleration of
v the particle and is defined by
Fra. 1-1. Motion of a particle in space, . dr ‘
illustrating the definition of velocity. a=-= {1-6)

. de

Many of the important conclusions of mechanics can be expressed in the
form of conservation theorems, which indicate under what conditions vari-
ous mechanical quantities are constant in time. Eq. (1-1) directly fur-
nishes the first of these, the

Conservation Theoreni ‘for the Linear Momentum of a Particle: If the- total
Jorce, F, is zero then p = 0 and the linear momentum, P, 18 conserved.

The angular momentum of the partxcle about pomt 0, denoted by L is
defined as . .

L=rxp, < (1—,7.-)

whene ris the radius veetor from O to the particle. Notice that:the. order

of the factors is important. We now define the moment of force. or torgue

about O as ,

: N=rxF. - {1-8)

The equation analogous to (1-1) for N is obtained by formmg the cross
product of r with Eq. (1-4):. _ .

er N—rx (mv) : (1~9)
Eq ( 1—9) can be wntben in a different form by nm the veo‘aor 1dent1ty
- (r X mv) = v x my + r X (mv),

where the first term on the right obv:ously va.mshes. In consequence of
this identity Eq. (1-9) takes the form

N=2(xmm =R (1-10)
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Note that both N and L depend upon the pomt Q, about which the moments

are taken.
As was the case for Eq. (1-1), the torque equation, (1——10), also yle]ds an
immediate conservation theorem, this time the

Congservation Theorem for the Angular Momentum of a Particle: If the total
torque, N, 18 zero then L = 0, and the angular momentum L is conserved.

Next consider the work done by the external force F upon the particle in
going from point 1 to point 2. By definition this work is

. 2 . : .
Wi =f F. ds. ) (1'—11)
1

For constant mass (as will be assumed from now on unless otﬁerwuse specl-:
fied), the integral in Eq. (1-11) reduces to

fF-ds mf— cvdt = —-jdt(v’)dt

e’

and therefore
. . Wi = e ,
The W Yuantity mv’/ 2 is called the klnetlc energy of the pa,rtxcle and g
denoted by, T, so that the work done is equal t'o the change in the kinetic
energy: . o 7T R T R

h Wh = Ti (1 13}.

If the foree ﬁeld is mch tkl.‘ the: work W done around a elonsd oxblﬁ ie
2810;; ie. ¥ { a

| fr ds=0, . S iy

then the force (and the system) is said to be conservative. Physically it is
cloar thit & system ‘cahnot be consetvative'if friction ot ‘otther dissipativly:
forees are present, for ¥ « ds due to friction ¢ alwkys tive'and the thté
gril ¢anndt vanish. ‘By Btokes Theotem ﬁx eond for’ mmaﬁ%
fomes Eq (1—14), can be Wﬁtﬁeh : : VR

§ Rt S S i s i
VXE 0 1>.~_.-".;\;

and’ sincé the curl of 4 grﬁdient a;lways vamshes F iﬁﬁst théfef&re Bé”thél ,
gradxent of some scala.r

(1‘-12)

B=—oy, T ﬂws)

where V is called the potentidl, or potential energg ;;l‘he existence of V can
be established without the use of theorems of vector calculus. If Eq. (1-14)
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holds, the work Wy, must be independent of the path of integration between
end points 1 and 2. It follows then that it must be possible to express Wi,
as the change in a quantity which depends only upon the positions of the
end points. This quantity may be designated by —V, so that for a differ-
ential path length we have the relation:

Fe.ds =—dV

or v
, 9V

Fo=- s’

which is equivalent to Eq. (1-15). Note that in Eq. (1-15) we can add to
V any quantity constant in space, without affecting the results. Hence,
the zero level of V is arbitrary.

For a conservative system the work done by the forces is

W12 =V - Vz- (1—16)
Combining Eq. (1-16) with Eq. (1~13) we have the result
Tl + V1 = Tz + Vz, (1'—17)

which states in symbols the

Energy Conservation Theorem for a Particle: If the forces acting on a particle
are conservative, then the total energy of the particle, T + V, is conserved.

1-2 Mechanics of a system of particles. In genéralizing the ideas of the
previous section to systems of many particles, we must distinguish between
the external forces acting on the particles due to sources outside the system,
and inlernal forces on, say, someé particle ¢ due to all other particles in the
system. Thus the equation of motion (Newton’s Second Law) for the ith
particle is to be written:

2 Fiu+4 FPP = p, (1-18)

where F§? stands for an external force, and F;; is the internal foroe on the
ith particle due to the jth particle (F;;, naturally, is zero). We shall as-
sume that the Fy; (like the F{?) obey Newton’s third law of action and
reaction: that the forces two particles exert on each other are equal and
opposite, and lie along the line joining them. There are some important
systems in which the forces do not follow this law, notably the electro-
magnetic forces between moving particles. The theorems derived below
must be applied to such systems with due caution. i

Summed over all particles Eq. (1-18) takes the form:

L S 4
aF e =2 T + 3P (1-19)
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The first sum on the right is simply the total external force F(?, while the
second term vanishes, since the law of action and reaction states that each
pair F,; + Fj; is zero. . To reduce the left~-hand side we define a vector R
as the average of the radii vectors of the particles, weighted in proportmn
to theu' mass, i.e.* '

R = Zmds _ Zma;

Zmg M

The vector R defines a point known as the cenfer of mass, or more loosely
as the center of gravity, of the system. With thig definition (1—19) reduces
to

(1-20)

M G =§ Fio 5 F®, (1-21)

which states that the center of mass moves as if the total external force
were acting on the entire mass of the system concentrated at the center of
mass. Purely internal forces therefore bave no effect on the motion of the
center of mass. An oft-quoted example is the mofion of an exploding
shell; the center of mass of the fragments trave] kng a8 if ghe shell were
still in a smgle Diece ‘(neglecting air resistance). ~The’ salme pkmclple is
involved in jet &nd rockét propulsion. In order that the mition of the
center of mass be unaffected, the ejection of the exhaust gasés at high
velocity must be counterbalanced by the forward motion of the vehmle

By Eq. (1-20) the total linear momentum of the system N
ds; | ‘
P 2’"‘ ds? X . K

is the total mass of the system times the velocity of the center of mass.
Cpnsequenp}y the equa.tlon of motion for the oent.er of maes,. (,1-21), can be
restated ag, the

Conservation Theorem for the Lmear Momentum of a Syswm d Parﬁcles '
Ifthe lolal ewtemalforce zs zero, thg total lmeqr mmntumucqmerved

We obtain the total angulsr momentum 0@ system by farm ’dxei
cross product r; X p; and summmg over 1. If operataon is performed
in Eq. {1+18) there resulta , .. Coa R RN T 1)

Ty svee ity ol o

E(Ics(fp‘)’zdt(fcxm)"'L%EI’CXW +E'l’ix§rﬁ Glr-ﬁ)
R~ ,

‘Msdeﬁmhonmaybemomfamﬂia:iqu (ldm)mmkrmoftbe

cartesian. coordinates -

" X"Ez%f’ ¥ = M g M
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The last term on the right in (1-22) can be considered a sum of the pairs
of the form : ‘
i XFu+ 1 xFy;=(r; —r;)) XF; (1-23)
using the equality of action and reaction. But r; — r;is identical with the
vector r;; from j to 7, and the law of action and reaction further states that
r; X Fji = 0,
since F;; is along the line between the two particles. Hence this sum van-
ishes and (1-22) may be written ' '
dL
e = (e) -—
7 N, ' , (1-24)

. . o ret g

Fia. 1-2. :I‘he center of mass of a Fic. 1-3. The vector r;; between the
system of particles. ~ fth and jth particles. .

The time derivative of the total angular momentum is thits equal to the
moment of the external force about the given point. Correspoinding to
Eq. (1-24) is the ( , L e e
Conservation Theorem for Total Angular Momentum: L is constant in time
if the ‘applied (external) torque 18 zero.' R -

(Tt is perhaps worthwhile to emphasize that this is s vector theorem, i.e.,
L; will be conserved if N{? is zero, even if N and N are not sero.)

Note that the conservation of angular mementum of & syptem in the
absence of applied torques holds only if the law of action and reaction ig
valid. In a system involving moving charges, where this laws ik violated,
it is not the total mechanical angular momentum which is cesserved; but
rather the sum of the mechanical and the electromagnetic ““ angular mo-
mentum”’ of the field.
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Eq. (1-21) states that the total linear momentum of the system is the
same as if the entire mass were concentrated at the center of mass and
moving with it. The analogous theorem for angular momentum is more
complicated. With the origin O as reference point the total angular mo-
mentum of the system is .

L=2nkm
H

Let R be the radius vector from O to the center of mass, and let r{ be the
radius vector from the center of mass to the ith particle. Then we have

(cf. Fig. 1-4):
ri=r1;+ R (1-25)
and
Vi =v,+V,
where
v==R
dt 1
is the velocity of the center of mass -
relative to O, and )
SR N TR
o 22
vV=a

Fia. 1-4. The vectors involved in the
, is the velocity of the ith particle rela-  shift of reference point for the angular

tive to the center of mass of the momentum. -
system. Using Eq. (1-25), the total angular momentum takes on the form

L=ZRXm.-v+zf¢' xm.‘r.’+ (Zm.r{) Xv+R xg_tz,m‘r:

The last two terms in this expression v}anish, for both contain the factor
Zmxi, which, it will be recognized, defines.the radius vector of the center
of mass in the very coordinate system whose origin is the center of mass,
and is therefore a null vector.”“Hewriting the remaining terms, the total
angular momentum about O is: ‘ o o
L=RxMv+rxp. - - (1-28)
4

In words, Eq. (1-26) says that the total angular momentum about a point O
8 the angular momentum of the system concentrated at the center of Inass,
plus the angular momentum of motion about the center of mass.  The.
form of Eq. (1-26) emphasizes that in general L depends on the origin O,
through the vector R. Only if the cénter of inass is at rest with respect to
O will the angular momentum be independent of the point of reference. *
In this case the first term in (1-26) vanishes, and L always reduces to the
sngular momentum taken about the eenter of mass. e
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Finally, let us consider the energy equation. As in the case of a single
particle, we calculate the work done by all forces in moving the system from
an initial configuration 1, to a final configuration 2:

2 : : )

=7 J1

Again, the equations of motion can be used to reduce the integrals to

33 w3 [imn

Hence the work done can still be written as the difference of the final and
initial kinetic energies: i

WIZ = T2 - Tl)
where T, the total kinetic energy of the system, is
1 L]
T =3 2 ma. . (1-28)

Making use of the transformations to center of mass coordinates, given in
Eq. (1-25), we may write T also as

TepSme o)

LR S Tt R
1 1 , d /<
—*5 ‘E ma)2+§ ? m;v,”+v-—dt! ‘Em

and by the reasoning already embloyed in calculating the angular momen-
tum, the last term vanishes, leaving o

),

1.1 , ‘
T=§Mv’+§2mm?. R -(1729)

The kinetic energy, like the angular momentum, thus also corigists of two
parts: the kinetic energy obtained if all the mass were concentrated at the
center of mass, plus the kinetic energy of motion about the center of mass.

Consider now the right-hand side of Eq. (1-27). *‘In the special case thut
the external forces are derivable from a poteéntisl the first tormi can be

- written as , _ :
Ef‘me).ds‘=-}2 YiV;'ds;;—EY;?, S
N o N AR |

where the subscript 7 on the del operator indicates that'i;he derivatives are
with respect to the components of r;. If the internal forces are also con-



