GIAN-CARLO ROTA, Editor
ENCYCLOPEDIA OF MATHEMATICS AND ITS APPLICATIONS

Yolume 3

Section: Probability
¥ Mark Kac, Section Editor

" l!

The Theory of i
Information and Coding
A-Mathematical Framework
for Communication

U

Robert J. McElieée'




it s o e i o

GIAN-CARLO ROTA, Editor
ENCYCLOPEDIA -OF MATHEMATICS AND ITS APPLICATIONS.

Volumc 3

Section: Probability
Mark Kac, Section Editor

£

The Theory of f
Information and Codmg
A Mathematical Framewdrk
for Communication

Robert J. McEliece
Jet Propulsion Laboratory
California Institute of Techn
Pasadena, California - 4

With a Foreword by
The Rockefeller University

A
vY
1977

»

Addison-Wdey Publishing Company
Advanced Book Program :

Reading, Massachusetts

London- Amsterdam - Don Mils, Ontario-Sydney-Tokyo



Library of Congress Cataloging in Publication Data

McEliece, Robert J
The theory of information and coding.

(Encyclopedia mathematics and its applications;
v. 3 : Section, Probability) :
Bibliography: p.
Includes indexes.
1. Information theory. 2. Coding theory.
I. Title. II. Series. i o
Q360.M25 - 001.53'9 77-21837
ISBN 0-201-13502-7 '

American Mathematical Society (MOS) Subject Classification Scheme (1970):
94A05, 94A10, M4ALS

Copyright © 1977 by Addison-Wesley Publishing Company, Inc.
Published simultaneously in Canada.
N A \ R \\ v
\ All rights reserved. No part of this publication may be reproduced, stored in a retrieval
or transmitted, in any form or by any means, electronic, mechanical, photocopy-
ing, recording, or otherwise, without the prior written permission of the publisher,
Addison-Wesley Publishing Company, Inc., Advanced Book Program, :
Reading, Massachusetts 01867, U.S.A.

Printed in the United States of America



Editor’s Statement |

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts, at times
- explicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely
to survive changes of style and of interest.
This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a -
- thorough bibliography are required of each author. Volumes will appear in -
no particular order, but will be organized into sections, each one compris-
ing a recognizable branch of present-day mathematics. Numbers of
volumes and sections will be reconsidered as times and needs change.
- It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied
but where it has not yet penetrated because of insufficient information.

T

Information theory is a success story in contemporary mathematics.
Born out of very real engineering problems, it has left its imprint on such
far-flung endeavors as the approximation of functions and the central limit
theorem of probability. It is an idea whose time has come.

Most mathematicians ‘cannot afford to ignore the basic results in this
field. Yet, because of the enormous outpouring of research, it is difficutt
Jor anyone who is not a specialist to single out the.basic results and the
relevant material. Robert McEliece has succeeded in giving a presentation
that achieves this objective, perhaps the first of its kind.-

GI1AN-CARLO ROTA



Foreword

Transmission of information is at the heart of what we call communica-
tion. As an aréa of concern it is so vast as to touch upon the preoccupa-
tions of philosophers and to give rise to a thriving technology.

We owe to the genius of Claude Shannon’ the recognition that a large
class of problems related to encoding, transmitting, and decoding informa-
tion can be approached in a systematic and disciplined way: his classic
paper of 1948 marks the birth of a new chapter of Mathematics.

- In the past thirty years there has grown a staggering literature in this
fledgling field, and some of its terminology even has become part of our
daily language.

The present monograph (actually two monographs in one) is an exoellent
introduction to the two aspects of communication: coding and transmis-
sion.

The first (which is the subject of Part 2) is an elegant illustration of the
power and beauty of Algebra; the second belongs to Probability Theory
which the chapter begun by Shannon enriched in novel and unexpected
ways.

MAaRk Kac
General Editor, Section on Probability

*C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech. ]. 27 (1948),
Introduction: 378-382; Part I: Discrete Noiseless Systems, 382-405; Part II: The Discrete
Channel with Noise (and Appendixes), 406-423; Part III: Mathematical Preliminaries, 623-636;
Part IV: The Continuous Chan.el (and Appendixes), 637-656).

xii



Preface

This book is meant to be a self-contained introduction to the basic
results in the theory of information and coding. It was written during
1972-1976, when I taught this subject at Caltech. About half my students
were electrical engineering graduate students; the others were majoring in
all sorts of other fields (mathematics, physics, biology, even one English
major!). As a result the course was aimed at nonspecialists as well as
specialists, and so is this book. )

The book is in three parts: Introduction, Part I (Information Theory),
and Part Il (Coding Theory). It is essential to read the introduction first,
because it gives an overview of the whole subject. In Part I, Chapter 1 is
fundamental, but it is probably a mistake to read it first, since it is really
just a collection of technical results about entropy, mutual information,
and so forth. It is better regarded as a reference section, and should be
consulted as necessary to understand Chapters 2-5. Chapter 6 is a sutvey
of advanced results, and can be read independently. In Part II, Chapter 7
is basic and must be read before Chapter 8; but Chapter 9 is almost, and
Chapter 10 is completely, independent from Chapter 7. Chapter 11 is
another survey chapter independent of everything else.

The problems at the end of the chapters are very important. They
contain verification of many omitted details, as well as many important
results not mentioned in the text. It is a good idea to at least read the
‘problems. ]

There are four appendices. Appendix A gives a brief survey of probabil-
ity theory, essential for Part I. Appendix B discusses convex functions and
Jensen’s inequality. Appeals to Jensen’s inequality are frequent in Part I,
and the reader unfamiliar with it should read Appendix B at the first
opportunity. Appendix C sketches the main results about finite fields
needed in Chapter 8. Appendix D describes an algorithm for counting
paths in directed graphs which is needed in Chapter 9. .

A word about cross-references is in order: sections, figures, examples,
-theorems, equations, and problems are numbered consecutively by
chapters, using double numeration. Thus “Section 2.3,” “Theorem 3.4,”
and “Prob. 4.17” refer to section 3 of Chapter 2, Theorem 4 of Chapter 3,
and Problem 17 of Chapter 4, respectively. The appendices are referred to
by letter; thus “Equation (B.4)” refers to the fo numbered equation in
Appendix B. '

XV



Preface

~ The following special symbols perhaps need explanation: “W” signals
the end of a proof or example; “iff” means if and only if; | x} denotes the
largest integer < x; and [x} denotes the smallest integer > x.

Finally, I am happy to acknowledge my debts: To Gus Solomon, for
introducing me to the subject in the first place; to John Pierce, for giving
me the opportunity to teach at Caltech; to Gian-Carlo Rota, for encourag-
ing me to write this book; to Len Baumert, Stan Butman, Gene Rodemich,

. and Howard Rumsey, for letting me pick their brains; to Jim Lesh and
Jerry Heller, for supplying data for Figures 6.7 and 11.2; to Bob Hall, for -
drafting the figures; to my typists, Ruth Stratton, Lillian Johnson, and
especially Dian Rapchak; and to Ruth Flohn for copy editing.

.My biggest debt, however, is to my wife Jeannette, for tolerating and
sustaining a frequently abstracted and unlovable author-husband. This .
book- is dedicated to her as an.inadequate but sincere expression of
appreciation and love.

ROBERT J. MCELIECE
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Introduction

In 1948, in t}i‘: introduction to his classic paper, “A mathematical theory
of communication;” Claude Shanhon!’ wrote:
i \
y “The fundamental problem of communication is that
of reprodué‘ing at one point either exactly or approx-
imately a message selected at another point.”

\\.\

. To solve that problem he created, in the pages that followed, a completely

new branch of applied mathematics, which is: today called information
theory andjor coding theory This book’s object is the- presentatnon of the
main results of this theory as they stand 30 years later.

In this intrgductory chapter we illustrate the. central ideas of information
theory by means of a specific pair of mathematical models, the binary
symmetric source and the binary symmetric channel.

The binary §ymmetnc source (the source, for short) is an object which
emits one of two possible symbols, which we take to be “0” and “1,” at a

. rate of R symbols per unit of time. We shall call these symbols bits, an
" abbreviation of binary digits. The bits emitted by the source are random,

\and a “0” is as likely to be emitted as a “1.” We imagine that the source
rate R is continuously variable, that is, R can assume any nonnegative
value.

The binary symmetric channel (the BSC? for short) is an object through
which it is possible to transmit one bit per unit of time. However, the
channel is not completely reliable: there is a fixed probability p (called the
raw bit error probability®), 0< p < 3, that the output bit will not be the same
as the input bit.

*Notes, denoted by superior numerals, appear at the end of each chapter.

ENCYCLOPEDIA OF MATHEMATICS and Its Applications, Gian-Carlo Rota (ed.).

Vol. 3: Robert J. McEliece, The Theory of Information and Coding

Copyright © 1977 by Addison-Wesley Publishing Company, Inc., Advanced Book Program.
All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical photocopying,
recording, or otherwise, without the prior permission of the publisher.



2 Introduction

We now imagine two individuals, the sender and the receiver. The
sender must try to convey to the receiver as acourately as possible the
source output, and the only communication link allowed between the two
is the BSC described above. (However, we will allow the sender and
receiver to get together before the source is turned on, so that each will
know the nature of the data-processing strategies the other will be using.)
We assume that both the sender and réceiver have access to unlimited
amounts of computing power, storage capacity, government funds, and
other resources. v

We now ask, For a given source rate R, how accurately can the sender
communicate with the receiver over the BSC? We shall eventually give a
very. precise general answer to this question, but let’s begin by considering
some special cases.

Suppose R=1/3. This means that the channel can transmit bits three .
times as fast as the source produces them, so the source output can be
encoded before transmission by repeating each bit three times. For exam-
ple, if the source’s first five bits were 10100, the encoded stream would be

- 111000111000000. The receiver will get three versions of each source bit,
but because of the channel “noise” these versions may not all be the same.
If the channel garbled the second, fifth, sixth, twelfth, and thirteenth
transmitted bits, the receiver would receive 101011111001100. A little
thought should convince you that in this situation the receiver’s best
strategy for decoding a given source bit is to take the majority vote of the
three versions of it. In our example he would decode the received message
as 11100, and would make an error in the second bit. In general, a source

. bit will be received in error if either two or three of its’three copies are

garbled by the channel. Thus, if P, denotes this bir error probability,

P,= P {2 channel errors} + P {3 channel errors}

=3p(1-p) +p°
=3p2—2p3. (0.1)

Since p < 3, this is less than the raw bit error probability p; our simple
coding scheme has improved the channdl’s reliability, and for very small p
the relative improvement is dramatic. ‘

It is now easy to see that even higher reliability can be achieved by
repeating each bit more times. Thus, if R=1/(2n+ 1) for some integer n, -
we could repeat -each bit 2n+1 times before transmission (see Prob. 0.2)
and use majority-vote decoding as before. It is simple to obtain a formula
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" for the resulting bit error probability P**:

2n+1
P@*+D= 3 Pk channel errors out of 2n+ 1 transmitted bxts}

k=n+1 ,
2n+1 In+1 . 2n'+l—k .

-2 1( " )p"(l—p)
a-n+

=(27+ 1) p*+1 4 torms of higher degree i (02
nt 1 P erms of higher degree in p. .2) .

If n> 1, this approaches 0 much more rapidly as p—0 than the special case
n=1 considered above.* So in this rather weak sense the longer repetition
schemes are more powerful than the shorter ones. However, we would like .
to make the stronger assertion that, for a fixed BSC with a fixed raw error
probability p < }, P?** D0 as n— oo, that is, by means of these repetition
‘schemes the channel can be made as reliable as desired. It is possible but
not easy to do this by studying formula (0.2) for P@"*", We shall use
another approach and invoke the weak law of Iarge numbers,* which
implies that, if N bits are transmitted over the channel, then for any e >0

number of channel errofs
N -p

lim PU

Noéo

> e} =0. 03)

* In other words, for large N, the fraction of bits received in error is unlikely

to differ substantially from p. Thus we can make the followlng estimate of
Pas+D.

PO"+D=p {fraction of transmitted bits received in error

>+l 2t a2

< P{fraction >} }

n+1l 1 1 }

< P {|fraction—p| >} —p},

and so by (0.3) P2**D does approach 0 as n—c0. We have thus reached
the conclusion that if R is very small, it is possible to make the overall
error probability very small as well, even though the channel itself is quite
noisy. This is of course not particularly surprising.

*Discussed in Appendix A. v



4 : Introduction

‘So much, temporarily, for rates less than 1. What about rates larger than
1?7 How accurately can we communicate under those circumstances?

If R > 1, we could, for example, merely transmit the fraction 1/R of the
source bits and require the receiver to guess the rest of the bits, say by
flipping an unbiased coin. For this not-very-bright scheme it is easy to
calculate that the resulting bit error probability would be

=i-(4-p)/R | (04)

Another, less uninspired method which works for some values of R > 1
" will be illustrated for R=3. If R=3 tHere is time to transmit only one third
of the bits emitted by the source over the channel. So the sender divides
the source bits into blocks of three and transmits only the majority-vote of
~the three. For example if the source emits 101110101000101, the sender
will transmit 11101 over the channel. The receiver merely triples each
Tteceived bit. In the present case if the channel garbled the second trans-'
_mitted bit he would receive 10101, which he would .expand to’
~111000111000111, thereby making five bit errors. In general, the resulting
bit error probability turns out to be

=iX(1=p)+5¥%p
=14p/2: \, (05)

Notice that this is less than 1 +p/3, which is what our pnmmve “coin-flip-
ping” strategy gives for R= 3 The generalization of this strategy to other
integral values of R is left as an exercise Prob. 0.4). ‘

The schemes we have considered so far l\ave been trivial, though
perhaps not completely uninteresting. Let us now give an example which is
wuch less trivial and in fact was unknown before 1948.

We assume now that R=4/7, so that for every four bits emitted by the
source there is just time to send three extra bits over the channel. We
choose these extra bits very carefully: if the four source bits are denoted by
XX}y X2, X3, then the extra or redundant or parity-check bits, labeled
X4 Xs,Xg, are determined by the equations

E Xa=x+x,+x; (mod2),
Xs=Xo+Xp+x; (mod2), (0.6)

Xg=Xxg+ X+ x3 (mocf\Z

Thus, for example, if (xg, x;, X5, x3)=(0110), then (x4 %5, xg)=(011), and the
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complete seven-bit codeword which would be sent over the channel is
0110011,

To describe how the receiver makes his estimate of the four source bits
from a garbled seven-bit codeword, that is,- to describe his decoding
algorithm, let us rewrite the parity-check equations (0.6) in the following
way:

x4 x4+ x5+ x4 =(),
X0 +x+x3 +xg =0,

(In (0.7) it is to be understood that the arithmetic is modulo 2.) Stated in a
slightly different way, if the binary matrix H is defined by

0 1 1 1 00
H={1 0 1 1 0 1 O}
1 1 0 0

we see that each of the 16 possible codewords x=(x, x,, X3, X3, X4, X5, Xg)
satisfies the matrix-vector equation

0
Hx™=|9|. (0.8)
{ 0 ] : A

(In (0.8) the superscnpt T meéans transpose )

It turns out to be fruitful to imagine that the BSC adds (mod2) either a 0
or a 1 to each transmitted bit, O if the bit is not received in error and 1 if it -
is. Thus if x=(xg,x,,...,x¢) is transmitted, the received vector is y=(x,+
zg Xy +2),...,Xg+ Zg), where z;=1 if the channel caused an error in the ith
‘coordinate and z; =0 if not. Thus, if zs(zo, .»Zg) denotes the error pattern,
then y=x+2z.

The receiver, who knows only y but wams to know x, now does a very

.cléver thing: he computes the following vector s=(sg,,,5,):

sT= HyT
=H(x+z)7
= Hx"+ Hz" :
‘=Hz"  (see (0.8)). (0.9)
Here s is .called the ;s)r'ndrom’ of y; a 0 component in the sjndr‘bme
indicates that the corresponding parity-check equation is satisfied by y, a 1

indicates that it is not. According to (0.9), the syndrome does not depend
on which codeword was sent, bm only on the error pattern z. However,
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since x=y+z, if the receiver can find z he will know x as well, and so he
focuses on the problem of finding z. The equation s = Hz” shows that s is_
the (binary) sum of those columns of H corresponding to 1’s in 2, that is,
corresponding to the bits of the codeword that were garbled by the
channel:

0
sT=2z0 1
1

1
0
1

+2z,

N . )
+--+240]. (0.10)
1

The receiver’s task, once he has computed s, is to “solve” the equation
sT= Hz" for z. Unfortunately, this is only three equations in seven un- .
knowns, and for any s there will always be 16 possibilities for z. This is
clearly progress, since there were a priori 128 possibilities for z, but how
can the receiver choose among the remaining 16? For example, suppose
y=(0111001) was recelved Then s=(101), and the 16 candidate z’s turn
-out to be:

0100000 0010011
1100011 0001010
0000101 0111001
0110110 1010000
o10t1111 1001001
1000110 1111010
1110101 0011100
1101100 1011111

Faced with this set of possible error patterns, it is fairly obvious what to
do: since the raw bit error probabxhty pis <3, the fewer 1’s (errors) in an
error pattern, the more hkely it is to’have been the actual error pattern. In
the current example, we’re lucky: there is a unique error pattern (0100000)
of least weight, the weight being the number of 1’s. So in this case the
receiver’s best estimate of z (based both on the syndrome and on the
channel statistics) is z=(0100000); the estimate of the transmitted code-
word is x=y+z=(0011001); and finally, the estimate of the four source
bits is (0011).

Of course we weren't really lucky in the above example, since we can
show that for any syndrome s there will always be a unique solution to
HzT=sT of weight 0 or 1. To see this, notice that if s=(000), then
z=(0000000) is the desired solution. But if s#(000), then s” must occur as
one of the columns of H; if s”=the ith column of H, then the error pattern
z, which has one 1 in the ith position and O’s elsewhere, is the unique
minimum-weight solution to Hz"=s7.

- We can now formally describe a decoding algorithm for this scheme,
which is called the (7,4) Hamming code. Given the received vector y, the
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receiver executes the following steps:

1. Compute the syndrome s” = Hy”.

2. If =0, set Z=0; go to 4. ‘

3. Locate the unique column of H which is equal to s; call it column i;
set 2=all 0’s except for a single 1 in the ith coordinate.

4. Set ¥ =y+2. (This is the decoder’s estimate of the transmitted code-
word.)

5. Output (%g, %, %,,%5), the first four components of x. (This is the
decoder’s estimate of the original source bits.)

It is of course possible that the vector Z produced by this algorithm will not
be equal to the actual error pattern z. However, if the channel causes at
most one error, that is, if the weight of 2z is 0 or 1, then it follows from the
above discussion that Z=z. Thus the Hamming cod? is a single-error-cor-
recting code. In fact it is easy to see that the above decoding algorithm will
fail to correctly identify the original codeword x iff the channel causes two
or more errors. Thus, if P, denotes the block error probability P {X#x},
o (7
Pe= 3 (k)p"(l -p)' 7"
k=2
=21p?—70p3+ etc.

Of course the block error probability P, doesn’t tell the whole story, for
even if XX, some of the components of % may nevertheless be right. If we
denote the bit error probablhty P{%#x;} by P9, it is possible to show
that, for all 0< i <6,

PO=9p2(1-p)* +19p% (1~ p)** 16p*(1 - p)’
+12p*(1-p)*+7p%(1 —p) +p’
=9p?—26p° +etc. ' - (011

Comparing this to (0.1), we see that for BSC’s with very small raw error
probabilities the Hamming code performs at rate 4/7=0.571 about as well
as the crude repetition scheme at raté 1/3=0.333..

We could also use the (7,4) Hamming code to communicate at R=7/4
by reversing the roles of sender and receiver. Here the sender would
partition the sequence of source bits into blocks of seven, reduce each
block of seven to only four via the above decoding algorithm (which in this
context would become an “encoding algorithm™), and transmit these four
bits over the channel. The receiver would decode the four received bits by
adding three extra bits, computed by the parity-check rules (0.6). For this



