Software
Engineering
Environments

CONCEPTS AND TECHNOLOGY

Robert N. Charette

Software
- Engineering
Environments

CONCEPTS AND TECHNOLOGY

Robert N. Charette

" Infertext Publications, Inc. |
McGraw-Hill, Inc. New York, NY

Dedication
To Mo.

Library of Congress Catalog Card Number 86-81063

Copyright (c) 1986 by Intertext Publications, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright Act of
1976, no part of this book may be reproduced or distributed in any form or by any means,
or stored in a data base or retrieval system without the prior written permission of the
publisher. :

10987654321
ISBN 0-07-010645-2

Intertext Publications, Inc.
McGraw-Hill Book Company
1221 Avenue of the Americas
New York, NY, 10020

" Adais a registered trademark of the United States Government (Ada Joint Program
Office)

Leonardo is a registered trademark of Microelectronics and Computer Technology
Corporation.

PSL/PSA is a registered trademark of ISDOS, Inc.

SADT is a registered trademark of SofTech, Inc.

SREM is a registered trademark of TRW Corporation.

STEP is a registered trademark of GTE Corporation.

Teamwork, Teamwork/RT, Teamwork/SA, and Teamwork/SD are registered trademarks
of Cadre Technologies, Inc.

UNIX is a registered trademark of Bell Laboratories.

The figures displayed on pages 118, 120, 121, 122, and 123 are reprinted with the
permission of Cadre Technologies, Inc.

 ACEKNOWLEDGEMENTS

Ytisa wery difficult thing to write out the acknowledgement section of this
%ook because so many people have been involved in its making. One always
visks leaving someone out. Therefore, I want to thank first all those unnam.-
ed, but impartant people who have contributed ideas and have argued with
me over the last few years to-help clarify my thoughts on the subject.
Individual members of the SEEWG, of NSIA, of NASA, of STARS, and Sof-
Inc. have provided the most help. It really has been you people that
have shaped and developed the core contributions of this book, and deserve
the majority of the credit.
- T'want to thank Paul Fortier of the Naval Underwater Systems Center for
Biving me the opportunity to write this book, and for commenting on and
\giving advice on how to improve many sections of it. I want to thank also
¥om Conrad of the Naval Underwater Systems Center and Bob Converse of
Computer Sciences Corporation for dedicating a tremendous amount of their
precious free time also reviewing some of the initial drafts, and for setting
nie on the straight and narrow whenever I would craft some dubious idea.
I especially wish to thank Dr. Charles McKay of the University of Hous-
tono at Clear Lake City. Dr. McKay has been very instrumental in forcing a
fethinking of many of my thoughts about environments, and for making me
wpderstand the problems of building software engineering environments for
uremely large softwars syster e 1354’5 “nace Station. ‘
Special thanks go - 5t to Corniiander Kate Paige, USN and Hank Stuebing
of the Naval Air Development Center who have been the most influencial

~ people in my thinking about environments. It would be difficult to find two

people that have contributed more to the present direction of software
engineering environments than Kate and Hank. .
Finally, I want to thank a very special friend who kept me going
throughout the dgony of writing this book. She was the one who patiently
listeried to my complaints, encouraged me when I felt overwhelmed, and
kicked me when I needed it. Books don't get written without those people
arcund. To Maureen Albrecht of SofTech, my greatest thanks. Thanks, Mo.

Robert Charette
1 June 1986

TABLE OF CONTENTS

1.

Software Engineering

Introduction '

Setting the Stage: The Software Problem
Software Engineering Today

The High Cost of Software

The Variation in Practice

The Lack of Productivity

What to do Next

Software Engineering Environments

Basic Requirements

Introduction :

Software Engineering Environments: A Definition
A Software Engineering Environment Description
An Ideal Software Engineering Environment
Summary

Requirements Analysis

Introduction

The Requirements Phase

Requirements Methods

Automation

Requirements of the Software Engineering
Environment

Summary

Specification

Introduction

The Specification Process

Specification Methods

Automation

Requirements of the Softwaie Engineering
Environment

Summary

T B ro

11

3

k1
35
36

39

%
81

8s
8Y
100
1%

124
123

12
127
129
136
155

160
161

Design
Introduction

The Design Phase
Design Methods

 Automation

Requirements of the Software Engmeenng
Environment

" Summary

Implementanon, Test, and Evolutnon .
Introduction -

- The Implementation Phase

The Testing Phase

The Evolution Phase

Implementation Methods

Testing Methods

Evolution Methods

Automation of Implementation, Testing, and
Evolution Methods .

Requirements of the Software Engmeermg
Environment

Summ’ary

Management Activities

- Introduction

General Management Activities

Resource Management

Product Assurance

Reusability

Requirements of the Software Engmeenng
Environment

Summary

Linkages

Introduction ,
The Software Engineéring Environment Database
Software Engineering Environment System Support
Functions

Software Engineering Environment Hardware
Characteristics

Summary

163
163

166.

177
192

195
196

199
199
201
207

Toann

214
218
223

225

228
228

231
231
233
241
247
258

260
260

262

262
263

277

280
281

9.

. 10.

Putting It All Together

Introduction

Life Cycle Phase Review

Software Engineering Environmeht Metrics

Summary

Some Software Engineering Environments Today
and in the Near Future

Introduction

Software Engineering Environment Efforts:

- United States
_ Foreign

The Fntﬁfe of Software Engineering Environments

" 'Technology Issues

Introduction

Software Engineering Process Issues
Software Engineering Methods Issues
Automation Issues

~ Summary

12.

The Future of Software Engineering Environments
Introduction and Transition Issues

Introduction

Technology Transfer

Organized Resistance

Organizational Impacts

Overcoming Organizational Resistance

System Engineering Environment

Appendix

References .

Index

351
355

- 356

356
357
360
364
368
370

373

381
400

1. SOFTWARE ENGINEERING

“Softwars is like entropy. Itis difficult to grasp, weighs nothing, and obeys the
Second Law of Thermodynamics; i.e., it always increases.”
Augustine’s Laws1

”‘

1.0 Introduction

Imagine, for a few minutes, that the time is the early 1990s. Your job, if you
decide to accept it, is to determine the software support requirements of a
new, computer-intensive system that a company you are interviewing with
‘as just won a competition to build. This means you will be responsible for
specifying all the computer-related elements required by the engineers, sci-
entists, technicians, managers, etc. involved in the project. They will use
these elements to create, maintain, and manage the a lication software that
is going to be developed and used within the new system. To help you under-
stand the nature of the job, a brief description of the system envisioned has
been provided. \

First, the proposed system architecture will contain several dozen hetero-
geneous computers networked together, but dispersed geographically across
thousands of miles. Moreover, the system will possess a large, as yet undeter-
mined, number of space-based elements continuously communicating with
the network via ground and satellite links.

The system’s reliability réquirements are severe. No individual failure of
a computer-based component of the system can keep a software task in exe-
cution from completion, nor can two such failures result in damage to life or
property. Furthermore, when any software updates are inserted into the sys-
tem, the system must continue to execute; i.e., the system cannot be brovht

(11

"[2] Software Engineering Environments

down during system regenerations. Once the system is made operational, it
must continue to be operational throughout its lifetime.

Since the system will likely evolve over the next twenty years or more,
easy technology insertion for both hardware and software is mandatory.
First estimates are that somewhere around 100 million new lines of high-
level code will be necessary for the system to fulfill its currently prescribed
mission, and up to 300 million additional needed to support currently
foreseen missions.

The system must be built within seven years, on time, within a tight
budget under public and congressional scrutiny, and any failure of the system
will be described in excrutiating detail by the world’s press. And it better be
fully documented. And, oh yes, there will be over 4,000 personnel, in thirty
major companies, and countless minor ones, involved in the total software
development. These companies will be located across the United States, and
possibly Europe and Japan, and must be able to “share” the support system
you are specifying.

Although grossly simplified, the system described above represents some
of the requirements that will have to be met if NASA’s Space Station Project
is to meet its initial operational capablhty in the mid-1990s. Ambitions? Most
definitely, but it is not alone in sheer size, cost, complexity, schedule, or
necessity. For instance, WIS and the Strategic Defense Initiative (SDI) also
fall into this category of “ambitious” systems, as do many others currently on
the planning boards of both the commercial and government sector.2

Although the systems mentioned above are on the larger side of the size
and complexity spectrum, many computer systems currently in everyday use
are of similar scope. The financial transaction systems used at banks, the
billing systems used by telephone companies, typical company payroll
systems, and the Social Security and Veteran’s Administration check
distribution systems are only a few examples that twenty-five years ago
would have been considered as ambitious as the Space Station, WIS, and SDI
systems are today. The airline reservation system is a prime example of a
system most of us take for granted, but which, on reflection, is rather
impressive. Travel agents from anywhere in the United States can call into a
computerized network to buy a ticket on almost any airline on one of
thousands of specific flights to hundreds of domestic and intemational cities,
select your seat (smoking, non-smokmg, window, or aisle), order special
assistance such as meals or wheelchairs, if necessary, and get your boarding
pass — all within a few minutes without your ever having to set foot inside an
airline terminal. And if it takes more than a few minutes, we get annoyed!

Software Engineering [3]

Both national security and domestic tranquility have become highly
dependent on our computerized systems. However, increasingly there is
something disquieting about this same level of dependence. Airplane crashes
(e.g., the 1979 Air New Zealand crash in Antartica), aborted space launches
(e.g., the Space Shuttle on its first two launch attempts in 1981), ghost trains
(e.g., the San Francisco Muni Metro train that “wasn’t there” in 1983), and
runaway missiles (e.g., the Soviet cruise missile that “got away” over
Norway and Finland in 1985) are only a few examples of what can happen
when a computer system doesn’t work correctly. Less spectacular events may
result only in the nuisance of lost time or money as when your automatic
bank teller swallows your bankcard because it wasn't reprogrammed to
accept old bankcards when the new ones were issued. On the other hand,
computer system failure can be potentially catastrophic to hundreds of mil-
lions of people. That’s because now even our concept of natioral defense is

predicated on what is achievable through the capabilities provfded by com--

puters. Some don’t believe that is necessarily good.

For instance, Dr. David L. Parnas, recognized as one of the Umted States’
leading computer scientists, does not believe that systems like the SDI, a
comerstone in our defense policy for the twenty-first century, can be built
‘with the reliability necessary to accomplish its objective of protecting the

United States from nuclear attack. This, he believes, is in large part because

we neither understand enough about the system requirements nor the process
of software creation to implement it [PARNASSS]. If this view is correct, the
result is wasted money at best and, as others argue, possibly reduced national
security.

Whether or not these specific views about SDI are totally valid — and
‘many believe they are not — Pamas does point out some concems. that few
will argue with. It seems most software development efforts are plagued by
the fact that we don’t know exactly what we are building, nor how to build it
sucoessﬁxlly More specifically, if new systems such as the Space Station are
. ever going to be successfully realized, a number of serious problems that
confront the current state of the practice of building computerized systems

- must be overcome. We.can summanze the current situation with three points:

D The Hzgh Cost o Software-Sofmare costs, in both financial and
human terms, are increasing rapidly as computerization of society
spreads. Software in large systems may approach $4 billion in

initial costs alone, while a computer error in an accounting system "

may mean mmeasurable anguish to an elderly person denied a

R IR

[4] Software Engineering Environments

much needed check. Software costs are the dominant costs of
software-based systems today.

* The Variation in Practice—There is a wide range of software
practices exercised both within and across government and
commercial sectors. These practices may lag the state of the art by
as many as fifteen years. As a result, software is difficult to manage
and varies widely in cost, reliability, and maintainability.

* The Need for Increased Productivity—Based upon analysis of
pprojected software requirements over the next two decades,

- demand will outstrip the resources for the production of software.
The only viable answer is to increase productivity, which can be
accomplished on the scale required only by increasing the
productivity of the process as a whole. Failure to increase
productivity tends to increase the severity of the two problems
above.

Astacking these problems and creating successful software systems is the
theme of this book. But before we explore this theme in detail, it would be
benaficial to review a condensed history of how these software problems
c%me to bg. To paraphrase Santayana, if we don’t understand our past, we are
cogyiamned to repeat it. _

1.¥ Setting the Stage: “The Software Problem”

‘In lhc early days of digital cqxhputing, software bdevelopmeng .was aimed
primarily at getting a single specialized program to work. Computers, then
&8 NOW, were meant to save large amounts of manual labor. First generation

,;wﬁqmmdpmmmmmm%mmummwu tion
of '_malive‘astronomicnavi‘gationandballistictablesusedp" ily by

 acienitists and the military. In the 1950s, as second generation computers

*“In both the 1940s and 505, a program was considered incre'as;'gly
., @mocoanfil if it: a) executed; b) executed quickly; c) gave an acceptable

Software Engineering [5]

answer. Regardless of the success criteria the quality of the program was
highly dependent on the skill of the programmer. Because of the lack of
resources provided by the computer to work with, there was great admira-
tion for an individual programmer’s ingenuity at providing the maximum
computation using the least amount of resources.3

New memory technology spawned the third generation computers. These
computers allowed even larger programs to be executed, and many programs
to be executed concurrently. This additional capability moved the trend in
goftware development in the late 1950s and early 1960s away from single
programs or cets of small programs to large assemblages of programs linked
to do one integrated system function. Large-scale use of software was
probably first attempted in the SAGE (Semi-Automatic Ground Environ-
ment) air defense system. It contained a computer with 58,000 vacuum tubes,
consumed 1.5 megawatts of power, executed a real-time application program
of 100,000 instructions, and had a support system of 112 million instructions
[AUGUSTINES3]. .

The creators of the SAGE system were the unfortunate first, but by no
means the last, to experience the problems surrounding the development of
large-scale software systems. Most of the problems they faced are still
familiar to those creating software systems today. ,

For example, the application program was too large and complex to be
created by a small group of programmers, instead requiring large teams of
programmers. The increased number of personnel, along with their required
logistical support (notice the large support system — much larger in fact than
thé system being built), rapidly boosted the cost of the project. The problem
of scale also appeared. A large program just didn’t seem to work all that well
[YEHS84]. It became clear that as the program size increased, the probability
fof error increased even faster. Although reliable statistics aren’t available,
SAGE probably also used most of the programmers then im existance, thus
depleting the numbers available for other programming jobs in the comrher-
cial sector and driving up. labor costs. Finally, a larger program and a more
capable computer allowed the programmers to be even more “ingenious”
than before.

However, the problems and lessons learned in the encountet with the
SAGE system development were to be quickly dismissed as a period of great
fervor and optimism swept the computer field in the mid and late 1960s.
Newer, more capable computers and software techniques promised to make’
any lessons learned obsolete or marginally transferable to new gystetn
developments. g :

[6] Software Engineering Environments

It was widely believed — or at least the marketing people claimed — the
‘advent of the fourth-generation machines would allow the distribution of:

programs across networks to form systenis roagnitudes larger than those ever
envisioned by the SAGE designers. Moreover, the costs of the hardware
systems were constantly going to be reduced, and what were previously
scarce resources (processing speed, memory, etc.) were going to become
everyday items. Additionally, to handle the software development of these
large systems, it was recognized that some discipline would have to be
brought to' the software field. But here, too, progress seemed to be making
rapid headway.

After all, research efforts were reporting results in the areas of software
design disciplines, problem abstraction, and notations for software
representations. These factors would allow a rational approach to software
development. Simultancously, high-level programming languages first de-
veloped in the 1950s were finally gaining acceptance by the programming
community as the code generated by the compilers became ever more
reliable and efficient. The issues of programmer productivity and software
quality, although still not completely solved, were seen as things of the past.
The age of functional programming as seen in the 1940s,’50s, and early’60s
would be replaced by the new age of structured programming [PETERS80].
The problems brought out by the development of the SAGE system would
soon be solved.

However.bythelate 1960s, this confidence was beginning to wane as
more and more software system developments were encountering exactly the
same problems as the CAGE system. So in 1968 and 1969, at two exciting and
contraversial NATO conferences held in West Germany, new ways were
discussed to solve the “software problem,” typified by expensive, unreliable,
and unmaintainable software. A new term was coined 1 help express what
‘was thought to be the solution: Software Engineering.

,SOFTWARE ENGINEERING. The beginnings of software engmeenng
given some literary license, conld make a great mythological tale in the
tradition of Wagner. it began with the creation of a brother to hardware
engineering, whose highly developed discipline was able to create systems
that, unlike software, worked within design constraints. Envious, a rebel
group of computer scientists sought to combine into a disciplined
engineering approach the magical techniques used by the self-styled
'‘programming artisans who then controlled the creation of software. In 1969,

Software Engineering [71

these disciples of the engineering approach met in Europe and created the
term “software engineering,” which was to change forever the way of
developing software. Software engineering was to mean “the establishment
and use of sound engineering principles in order to economically obtain,
software that is reliable and works efficiently on real machines”
[NAUER69]. However, many opposed this view, calling it a fabrication that
took away the uniqueness and magic of programming. So the great debates
over whether the creation of software was an art, science, or discipline
ravaged the land for almost twenty years [HOARES4].

Over the last few years the debates have died down as those who believe in
the engineering approach seem to have won the battle for converts. Some
cynical observers blame it on better public relations, although others say that
since software still doesn’t work well, neither those favoring the science or
art approaches want to take the blame. Nevertheless, the term “software
engineering” has received a certain level of acceptance throughout the
software community and is the current thrust. However, exactly what it
means is still somewhat fuzzy, and this is probably why everyone accepts it. It
seems to mean whatever one wants it to mean. ‘

This shouldn’t be surprising to anyone either, as software engineering
hasn’t yet reached its twentieth birthday, and like most teenagers, still can’t
decide on what it wants to be. The IEEE Standard Glossary on Software
Engineering Terminology (TEEE83] defines it as, “the systematic approach
to the development, operation, maintenance, and retirement of software.”
Software is then defined as “computer programs, procedures, rules and
possibly associated documentation and data pertaining to the operation of a -
computer system.” A el Do

In Fairley’s text [FAIRLEY84] on softwaie engineering conicepts, soft-
ware engineering is defined as “the technological and managerial discipline
concerned with systematic production and maintenance of software products
that are developed on time and within cost estimates,”. A software product
includes the system-level software, application software, and all associated
documentation. Some typical items making up a software product are shown -
in table 1-1. Rather than adding a new definition to the ligt, we will be content
to use Fairley’s definition as our operational one. However, we do wish to
add one more element to the discussion. S T

The above definition of software engineering describes what it is, but on-
ly implicitly its goals. Pressman [PRESSMANS2) states them very succinct- -
ly: “The key objectives of software engineering are (to define, create,
and applyS) (1) a well-defined methodology that addresses & software life

[8] Software Engineering Environments

* Requirements Document « Specification Document
« System Description Document « Test Specification’

» Software Development Plan » Test Procedures

* Functional Design Document « Test Reports

* Detailed Design Document * User Manual

* Verification Plan » Source Code Listing

* Trouble Reports * Object Code Listings

Table 1 -1 Typlcal Components of a Software Product

cycle of planning, development, and maintenance; (2) an established set of
software components that documents each step in the life cycle and shows
traceability from step to step, and (3) a set of predictable milestones that can
be reviewed at regular intervals throughout the software life cycle.” The
combination of both these definitions allows the derivation of some of the
goals/objectives of the software engineering process, which are shown in
table 1-2.

So with the combination of these two thoughts still fresh in our minds,
let’s Jook at software engineering as it appears today.

1.2 Software Engineering Today

As has been amply documented elsewhere [BOEHM76, WEGNER7S,
REDWINEB84] advances in software engineering technology have occurred
- on all fronts: requirements analysis, implementation strategies, cost models,

etc., to name just a few. Bachadvancehasbeenmmedatreducmgoneoftbe
three problems we mentioned earlier: (1) the high cost of software, (2) the
varistion in practice, or (3) the lack of productivity. In reality, each problem
is coupled tightly to the other, and solutions to one usually help to make the
- solutions to the others more feasible. For instance, the movement toward

Software Engineering [9]

P -

Goals/Objectives of the Procgsa of Software Engineering

« To improve the accuracy, performance, and efficiency of

the overall product under development

« To apply well-defined methodologies for the resolution of
software/system issues , CoL

« To provide rational resolution of conflicts and,documantation
of ditferences when resolution is not possible

« To provide for product change In response to new dr
modified requirements oy

» To provide an understanding of the role of all étakehdtéert
in the resolution of complex issues and the differing sets of
constraints under which they operate

« To provide clear communication among rhanagement and
the members of the system/software engineering teams

« To provide the understanding of how current systertis

and the evolution of future products are impacted by present
day decisions ‘

« To-provide explicit identification and consideration of all
‘normally implicit tradeoffs, assumptions, constraints, and
intentions, and recognition of what Is, and is not, important

for planning and decision making purposes

« To provide anticipation of contingencies and identification
of the impacts of proposed situations

« To document decisions, the rationale behind decisions, and
the actions taken; create and maintain a corporate memory

« To provide explicit descriptions of schedules and milestones,
and an understanding of the effects of time upon lssues under
consideration ’ .

Table 1-2

using high-level languages in software development instead of assembly
‘language can be traced primarily to improving programmer productivity.
Although taken for granted now, even just tea years ago this was a major
change of operating practice in some industry organizations. This single
change has accounted for billions of dollars saved in software costs, the

[10] Software Engineering Environments

(m} o]
1000r 80r

750

o
=]
1

500

T

Program Cost ($B)
8
T

N
o
I

250

Onboard Software Size (KSLC)

APOLLO SHUTTLE SPACE STATION

- Figure 1 -1 Software Cost ratio_ vs.‘ Space ;Fllght Software Trends

P

LI

i T
HE A .

100,000 4—

Relative Capability of Computer Hardwar
410,000 ~t~. . :

1'000 T
100 ~—

10 —— Productivity of Programmers ——

1

; 1 |] |
g I I § i 1
1960 1964 1968 1972 1976 1980
, o o - Source : Electronics, May 1970
Flgum1 2 Relative Capabmty of Computer Hardware over Time

