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Preface

Fluid dynamics is an ancient science incredibly alive today. Modern technol-
ogy and new needs require a deeper knowledge of the behavior of real fluids.
and new discoveries or steps forward pose. quite often, challenging and diffi-
cult new mathematical problems. In this framework, a special role is played
by incompressible nonviscous (sometimes called perfect) flows. This is a
mathematical model consisting essentially of an evolution equation (the
Euler equation) for the velocity field of fluids. Such an equation. which is
nothing other than the Newton laws plus some additional structural hypo-
theses, was discovered by Euler in 1755, and although it is more than two
centuries old, many fundamental questions concerning its solutions are still
open. In particular, it is not known whether the solutions, for reasonably
general initial conditions, develop singularities in a finite time, and very little
is known about the long-term behavior of smooth solutions. These and other
basic problems are still open, and this is one of the reasons why the mathe-
matical theory of perfect flows is far from being completed.

Incompressible flows have been attached. by many distinguished mathe-
maticians, with a large variety of mathematical techniques so that, today, this
field constitutes a very rich and stimulating part of applied mathematics. The
idea of writing the present book was motivated by the fact that, although
there are many interesting books on the subject, no recent one, to our knowl-
edge, is oriented toward mathematical physics. By this we mean a book that
is mathematically rigorous and as complete as possible without hiding the
underlying physical ideas, presenting the arguments in a natural order, from
basic questions to more sophisticated ones, proving everything and trying, at
the same time, to avoid boring technicalities. This is our purpose.

The book does not require a deep mathematical knowledge. The required
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background is a good understanding of the classical arguments of mathemat-
ical analysis, including the basic elements of ordinary and partial differential
equations, measure theory and analytic functions, and a few notions of po-
tential theory and functional analysis.

The exposition is as self-contained as possible. Several appendices, de-
voted to technical or elementary classical arguments, are included. This does
not mean, however, that the book is easy to read. In fact, even if we tried to
present the topics in an elementary fashion and in the simplest cases, the style
is, in general, purely mathematical and rather concise, so that the reader
quite often is requested to spend some time in independent thinking during
the most delicate steps of the exposition. Some exercises, with a varying
degree of difficulty (the most difficult are marked by *), are presented at the
end of many chapters. We believe solving them is the best test to see whether
the basic notions have been understood.

The choice of arguments is classical and in a sense obligatory. The presen-
tation of the material, the relative weight of the various arguments, and the
general style reflect the tastes of the authors and their knowledge. It cannot
be otherwise.

The material is organized as follows: In Chapter 1 we present the basic
equations of motion of incompressible nonviscous fluids (the Euler equation)
and their elementary properties. In Chapter 2 we discuss the construction of
the solutions of the Cauchy problem for the Euler equation. In Chapter 3 we
study the stability properties of stationary solutions. In Chapter 4 we intro-
duce and discuss the vortex model. In Chapter S we briefly analyze the ap-
proximation schemes for the solutions of fluid dynamical equations. Chap-
ter 6 is devoted to the time evolution of discontinuities such as the vortex
sheets or the water waves. Finally, in Chapter 7 we discuss turbulent mo-
tions. This last chapter mostly contains arguments of current research and is
essentially discursive.

The final section of each chapter is generally devoted to a discussion of the
existing literature and further developments. We hope that this will stimulate
the reader to study and research further.

The book can be read following the natural order of the chapters. but also
along the following paths:
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A possible criticism of the book is that two-dimensional flows are treated
in much more detail than three-dimensional ones, which are, physically
speaking, much more interesting. Unfortunately, for a mathematical trea-
tise, it cannot be otherwise: The mathematical theory of a genuine three-
dimensional flow is, at present, still poor compared with the rather rich anal-
ysis of the two-dimensional case to which we address many efforts.

It is a pleasure to thank D. Benedetto, E. Caglioti, A.J. Chorin, P. Drazin,
R. Esposito, T. Kato, D. Levi, R. Robert, and R. Temam for useful sugges-
tions and, particularly, P. Laurence and C. Maffei for their constructive criti-
cism in reading some parts of the present book. We are also grateful to H.
Aref for having sent us the MacVortex program. We finally thank C. Vaughn
for her advice in improving our English.

Rome. Ttaly CARLO MARCHIORO
MARIO PULVIRENTI
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CHAPTER 1

General Considerations on
the Euler Equation

This chapter has an introductory nature, wherein we discuss the fundamen-
tal equations describing the motion of an incompressible nonviscous fluid
and establish some elementary properties.

1.1. The Equation of Motion of an
Ideal Incompressible Fluid

In this section we establish the mathematical model of an ideal incompress-
ible fluid, deriving heuristically the equation governing its motion.

Fluid mechanics studies the behavior of gases and liquids. The phenom-
ena we want to study are macroscopic: we do not want to investigate the
dynamics of the individual molecules constituting the fluid, but the gross
behavior of many of them. For this purpose we assume the fluid as a contin-
uum. a point of which is a very small portion of the réal fluid, negligible with
respect to the macroscopic size (for instance, the size of the vessel containing
the fluid), but very large with respect to the molecular jength. This small
volume, a point in our mathematical description, will be called fluid particle
or element of fluid later in this book. As a consequence, the physical state of
a fluid will be described by properties of the fluid particles and not by the
physical state of all the microscopic molecules. The macroscopic fields de-
scribing the state, as, for instance, the velocity field, u = u(x), the density field
p = p(x), the temperature field, T = T(x), etc,, can be physically interpreted
(and, in principle, calculated) by means of averages of suitable microscopic
quantities. For example, the macroscopic velocity field in a point u(x) means

1 Mo

u(x) = _N—(x—) Z His (L1)

i=1
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Element of fluid localized in x

ux) Enlargement

—_—
Velocity field in x

u; = velocity of the ith molecule

Figure 1.1

where N(x) is the number of molecules associated to the fluid particle local-
izedin xand p;,i = 1,..., N(x) are the velocities of these molecules (Fig. 1.1).

It would be very interesting to deduce the evolution equation for the fields,
u = u{x), p = p(x), etc., starting from the Newton equation which governs the
motion of the molecules. To give a measure of the difficulty of this program
we note that the macroscopic observables u, p, T, etc., give us a reduced
description of the physicat system we are considering. Such a system is de-
scribed, in much more detail, by the positions and the velocities of all the
microscopic molecules. Therefore, it is not at all obvious that we are able to
deduce some closed equations involving only the interesting observables.

Until now, a rigorous microscopic derivation of the fluid equations from
the Newton laws is not known. For some discussion on this point we address
the reader to Section L.5. which is devoted to comments and bibliographical
notes. In the absence of this deduction we limit ourselves to fixing the mathe-
matical model of a fluid by heuristic considerations only, without taking into
account its microscopic structure. We will deduce the basic equation, called
the Euler equation, by the use of reasonable assumptions on the motion of
the fluid parlicles. In the following sections, our study will be essentially
deductive, starting from the Euler equation, which constitutes our mathemat-
ical model. Obviously, we will not neglect the physical interpretation which
is important to verify the validity of the model itself and the relevance of the
results.

The rest of the present section is devoted to the derivation of the Euler
equation.

Let D < R?, an open and bounded set of the physical space with a regular
boundary éD. D contains a fluid represented as a continuum of particles
localized in any point x € D.

An incompressible displacement of the fluid is a transformation s: D —» D
such that the following properties hold:

(a) s is invertible and s(D) = D;
(b) 5,5 € CY(D); and
(c) s preserves the Lebesgue measure.
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Figure 1.2

The property (c) means that, for any measurable set A, 4 c D, denoted by

s(A4)={xeD[s'(x)e A}, (1.2)
we have
Is(A) = 1 4], (1.3)

where | 4| = meas A denotes the Lebesgue measure of 4 (Fig. 1.2). We denote
by S the set of all the incompressible displacements. It is evident that S has a
group structure with respect to the law of natural composition

5; 0 55(X) = 55(5,(x)).

An incompressible motion is, by definition, a function s, re R' > ®,, €S
such that:

() &, (D, (x)) = D, (x)
(2) ®,,(®, (x}) = ®, () = x: and
(3) ®, ((x) is continuously differentiable in ¢ and s.

Here ®, ; denotes the position at time ¢ of the particle of fluid that at time s
was in x. We will denote by M. in the sequel. the family of incompressible
motions.

We note that these conditions are reasonable properties of regularity. The
requirement that the transformation be invertible means also that two differ-
ent particles of fluid cannot occupy the same position. Moreover, the defini-
tion of ® itself gives the conservation of the Lebesgue measure during the
motion.

These conditions make it very easy to study the time evolution of the
density field p = p(x, t). We denote by p(x, 1) dx the mass of fluid contained
in the element of volume dx at time 1, and we assume that p € C(D). By the
law of conservation of mass we have

%f p(x, )dx =0, (1.4)



4 1. General Considerations on the Euler Equation

where
V= {®,(x)lx e V} (1.5)

is the region moving along the trajectories of an incompressible motion and
D,(x) = D, o(x).
Let

d
u®(x), 1) = 70 (1.6)

be the velocity field associated with this motion.
By (1.4) we have

d d
dt -[V. plx, t)ydx = I '[Vo p(d,(x), )J(x) dx

= EJ. p(®D,(x),t)dx =0, .n
dt Jy,
where J,(x) is the Jacobian of the transformation x — ®,(x). The incompressi-
bility condition (together with the continuity of the transformation) implies
that it is one.

Hence, by the arbitrariness of V,, we have

d
EP(‘D,(X), =G +u Vp(®(x), ) =0. (1.8)

From a physical point of view there are interesting situations in which the
density is initially (and hence by (1.8) for all times) not constant in space. We
will provide an example in Chapter 6. However, in most of the physically
relevant cases, in which the model of incompressible fluid-applies, the density
can be assumed to be essentially constant. In the present book we will assume
the density to be always constant (for simplicity p = 1), unless explicitly men-
tioned otherwise.

The condition of incompressibility is equivalent, by a well-known theorem
on differential equations (the Liouville Theorem, see Appendix 1.1), to the
condition

divu(x,t) = V-u(x, 1) =0, VxeD, teR. (1.9)

Equation (1.9) is usually called the continuity equation for incompressible
flows.

From this point on, in this section, we are assuming uec C'{D x R').
Moreover, for any ¢, u(x, t) is assumed continuous in x € D = D u &D. This
allows us to define the velocity u(x, t) on the boundary &D as a limit.

We will now establish the boundary conditions. In general, for partial
differential equations describing physical systems, the boundary conditions
are a mathematical expression of the interaction of the system with the
boundary. In our case, we must assume the most general and natural as-
sumption which can be deduced from kinematic considerations only: the
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fluid particles cannot pass through the boundary so that
u(x,t)-n =tv{x)-n ondcD, (1.10)

where v(x) is the velocity of the boundary at the point x. Most of the time,
later in this book, we will comsider the container D at rest so that v(x) = 0
for all x € 6D.

Once the velocity field u is known, the trajectories ®(x) can be uniquely
built by solving the initial value problem (1.6) for the unknown quantity ®,(x}
with initial value x at time1 = 0.

We now want to state the equations of motion of an incompressible fluid.
To determine the motion of the fluid particles we must specify the interac-
tions among the particles themselves. We consider the only interaction pro-
duced by the incompressibility. This means that each particle tries to move
freely, the only constraint being that it cannot occupy the site in which there
is another particle. Later on we will be more precise. This model of an incom-
pressible fluid is called ideal (or perfect) and it is the simplest model we
can conceive.

To find the equations of motion it is convenient to consider the Principle
of Stationary Action as suggested by the classical mechanics of systems with
a finite number of the degrees of freedom.

The kinetic energy (and also the Lagrangian) of the system is given by the

following expression:
1 d :
=1 dx|=®(x)|. A1
E ZJ.D ‘I:dt ,(V)] (111

So the action is defined as

1 12 d 2
A®:n, 1) = 5 . dtde SO0 (1.12)

Then @ —» A(®; £, t,) is a functional defined on M, the space of incompress-
ible motions. We have not added an interaction energy since the motion we
have in mind is the same as the free motion, on a given manifold, of a finite
particle system. In our case the “manifold” is given by the incompressibility
constraint. Therefore, as in the mechanical analogue where the variation is
chosen in accord with the constraint, here we will consider variations in the
class M. Hence, to determine the physical motion ®, we ask that the action
be stationary for variations, ® — ® + J®, which are compatible with the
constraint of incompressibility, and to satisfy 69, (x) = 6®,,(x) = 0 for all
x e D (Fig. 1.3). Moreover, the variation must also satisfy the boundary
conditions

£of(x)'n=0’ x € éD.

We denote by @, e€(0,¢,], a family of varied motions, tangent to the
boundary 4D, such that

®°=0 =9, =0 Vee [0, 6]

[P
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We impose that the action A be stationary on ®, namely,
d
5 A1, 1,5)l,.0 = 0.

From (1.13) we easily obtain

f2 d d
( dt L d.\’mtb,(x)-‘ﬂ 7 (@,(x)) =0,

v

where -, = ;0 and ;7 is defined by

d
HD(X)) = — DH(x).
7 (@(x)) i s (x)

1. General Considerations on the Euler Equation

(1.13)

(1.14)

(1.15)

77 is the vector field transversal to the motion that generates a flow pa-

D, (x))

Figure 1.4
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Figure 1.5

rametrized by ¢ (Fig. 1.4)
d,(x) - d(x). (1.16)

Obviously, such flow preserves the Lebesgue measure (Fig. 1.5)
(D(A)] = |A] = |D(A) (1.17)
and hence, by the Liouville theorem,
divy, =0. (1.18)
Moreover, it follows easily from definition (1.15) that
wn=0 for xecD.

Coming back to (1.14), we obtain, by integration by parts,

[ 9 2
'f dt _[ dx {d—z [d),(x)]“,',(d),(x))} =0. (1.19)
" > de
Moreover,
d* d
Pwr(x) = E u(d),(x), [) = D,u(fD,(x), l)- (120)

Here we used the notation

_
Df=éf+w W =af+ 3w (1.21)

for the derivative of a function f along the trajectories @,(x) (D, is sometimes
also called the material or substantial or molecular derivative).

We insert (1.20) in (1.19). Since the Jacobian of the time transformation is
one, by virtue of the arbitrariness of the times ¢, and t,, we obtain

J. (D,u)(x)- 7,(x)dx = 0. (1.22)
D
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From (1.22) it follows that D,u is orthogonal (in the sense of L,(D}) to all
divergence-free vector fields tangent to the border. (The arbitrariness of y
follows from the arbitrariness of ®¢). By virtue of a classical lemma (see
Appendix 1.2), which states that a vector field, which is orthogonal to all the
divergence-free fields tangent to the boundary, is the gradient of a scalar
function, we can conclude that

Du=-Vp (1.23)

for some function p: R x D — R. We observe that the minus sign in (1.23) is
purely conventional.
Equation (1.23), together with the equations,

V-u=0, (1.24)
u-n=0 oncD, (1.25)

form the Euler equation for an ideal (or perfect) incompressible fluid.

The physical meaning of these equations is transparent: D,u, the accelera-
tion of a fluid particle, is equal to a force —Vp to be determined on the basis
of the principle of the incompressibility. —Vp plays the same role as the
constraint force for a free particle system constrained to move on a manifold.
It is easy to verify (see Exercise 4) that a completely free motion in general
violates the incompressibility condition. The scalar field p = p(x, t) is called
pressure.

An interesting class of solutions of the Euler equation are the steady or
stationary flows which are the solutions, u = u(x), not explicitly depending
on time. For such flows the material derivative D,u consists only of the term
(- Vu, so that the stationary flows are those divergence-free fields for which
(1 Vu is the gradient of a scalar field. In this case, the integral lines of the
velocity field are constant in time and they coincide with the trajectories of
the particles of the fluid.

Equations (1.23), (1.24), (1.25) form a system of partial differential equa-
tions that we rewrite explicitly

3
Zuj(x, 1) + i};‘ [u; & Juyx, 1y = —p(x, 1),

o

Gy uilx, 1} =0, (1.26)

i=t1

3

Z u; ni(x)=0.
i=1

This system of equations, in spite of the simplicity of the physical model
from which they have been deduced, gives rise to a rather complicated math-
ematical problem, as we will see in detail in the next chapter. Here we want
to outline only that the main problem of fluid dynamics consists in deter-
mining the velocity field, u = u(x, 1), at time ¢ once known at time zero. When
the velocity field is determined, the trajectories of the fluid particles are the



