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Preface

The recognition of the domain of mathematics called fibre bundles
took place in the period 1935-1940. The first general definitions were
given by H. Whitney. His work and that of H. Hopf and E. Stiefel
demonstrated the importance of the subject for the applications of
topology to differential geometry. Since then, some seventy odd
papers dealing with bundles have appeared. The subject has attracted
general interest, for it contains some of the finest applications of
topology to other fields, and gives promise of many more. It also
marks a return of algebraic topology to its origin; and, after many
years of introspective development, a revitalization of the subject -
from its roots in the study of classical manifolds.

No exposition of fibre bundles has appeared. The literature isin a
state of partial confusion, due mainly to the experimentation with
a variety of definitions of “‘fibre bundle.”” It has not been clear that
any one definition would suffice for all results. The derivations of
analogous conclusions from differing hypotheses have produced much
overlapping. Many ‘“known’’ results have not been published. It
has been realized that certain standard theorems of topology are special
cases of propositions about bundles, but the generalized forms have not
been given.

The present treatment is an initial attempt at an organization. It
grew out of lectures which I gave at the University of Michigan in
1947, and at Princeton University in 1948. The informed reader will
find little here that is essentially new. Only such improvements and
fresh applications are made as must accompany any reasonably suc-
cessful organization.

The book is divided into three parts according to the demands
made on the reader’s knowledge of topology. The first part presup-
poses only a minimum of point set theory and closes with two articles
dealing with covering spaces and the fundamental group. Part II
makes extensive use of the homotopy groups of Hurewicz. Since no
treatment of these has appeared in book form, Part II opens with a
survey of the subject. "Definitions and results are stated in detail;
some proofs are given, and others are indicated. In Part III we make
use of cohomology theory. Here, again, a survey is required because
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vi PREFACE

the standard treatments do not include the generalized form we must
use. A reader who is familiar with the elements of homology theory
will have little difficulty.

I must acknowledge my gratitude to Professor Sze-tsen Hu
and Dr. R. L. Taylor who read the manuscript and suggested many
improvements.

I wish to acknowledge also the aid of the National Academy of
Sciences in support of publication of this volume.

Numbers enclosed in brackets refer to the bibliography.

NoORMAN STEENROD
May, 1960
Princeton University
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Part I. The General Theory of Bundles

§1. INTRODUCTION

1.1. Provisional definition. A fibre bundle ® consists, at least, of
the following: (i) a topological space B called the bundle space (or,
simply, bundle), (ii) a topological space X called the base space, (iii) a
continuous map

p: B-X

of B onto X called the projection, and (iv) a space Y called the fibre.
The set Y, defined by

Y, = Z’"’(x),

is called the fibre over the point x of X. It is required that each Y, be
homeomorphic to Y. Finally, for each z of X, there is a neighborhood
V of z and a homeomorphism

¢: VXY—-p(V)
such that
pd(z’y) =2 2eV,ye?.

A cross-section of a bundle is a continuous map f: X — B such that
pf(x) = z for each z e X.

The above definition of bundle is not sufficiently restrictive. A
bundle will be required to carry additional structure involving a group
G of homeomorphisms of Y called the group of the bundle. Before
imposing the additional requirements, consideration of a collection
of examples will show the need for these. The discussion of these
examples will be brief and intuitive; each will be treated later in detail.

1.2. The product bundle. The first example is the product bundle
or product space B = X X Y. In this case, the projection is given
by p(z,y) = . Taking V = X and ¢ = the identity, the last condi-
tion is fulfilled. The cross-sections of B are just the graphs of maps
X — Y. The fibres are, of course, all homeomorphic, however there
is & natural unique homeomorphism Y,— Y given by (z,y) = y. As
will be seen, this is equivalent to the statement that the group @ of the
bundle consists of the identity alone.

1.3. The Mobius band. The second example is the Mébius band.
The base space X is a circle obtained from a line segment L (as indicated
in Fig. 1) by identifying its ends. The fibre Y is a line segment. The

3 .



4 GENERAL THEORY OF BUNDLES [PaRT I

bundle B is obtained from the product L X Y by matching the two
ends with a twist. The projection L X Y — L carries over under this
matching into a projection p: B — X. There are numerous cross-
sections; any curve as indicated with end points that match provides a
cross-section. It is clear that any two cross-sections must agree on at
least one point. There is no natural unique homeomorphism of Y,

c b

X X
Fia. 1.

with Y. However there are two such which differ by the map g of Y
on itself obtained by reflecting in its midpoint. In this case the group
G is the cyclic group of order 2 generated by g.

1.4. The Klein bottle. The third example is the Klein bottle.
The preceding construction is modified by replacing the fibre by a circle
(Fig. 2). The ends of the cylinder L X Y are identified, as indicated,
by reflecting in the diameter de. Again, the group G, is the cyclic group

b
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\
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Fia. 2.

of order 2 generated by this reflection. (It is impossible to visualize
this example in complete detail since the Klein bottle cannot be
imbedded topologically in euclidean 3-space.)

1.6. The twisted torus. The fourth example, we will call the
twisted torus. The construction is the same as for the Klein bottle
except that reflection in the diameter de is replaced by reflection in the
center of the circle (or rotation through 180°). Asbefore, the group G is

.



§1] INTRODUCTION ]

cyclic of order 2. In contrast to the preceding two examples, this
bundle is homeomorphic to the product space X X ¥ and in such a way
a8 to preserve fibres. However to achieve this one must use homeo-
morphisms ¥ — Y, other than the two natural ones. But they need
not differ from these by more than rotations of ¥. This behavior is
expressed by saying that the twisted torus is not a product bundle, but
it is equivalent to one in the full group of rotations of Y.

1.6. Covering spaces. A covering space B of a space X is another
example of a bundle. The projection p: B — X is the covering map.
The usual definition of a covering space is the definition of bundle, in
§1.1, modified by requiring that each Y, is a discrete subspace of B,
and that ¢ is a homeomorphism of V X Y, with p~1(V) so that o(z,y)
= y. Ii,inaddition, it is supposed that X is arcwise connected, motion
of a point z along a curve C in X from z, to z; can be covered by a con-
tinuous motion of Y, in B from Y, to ¥, Choosing a base point Zo,
each Y, can be put in 1-1 correspondence with ¥. = ¥, using a curve in
X. This correspondence depends only on the homotopy class of the
curve. Considering the action on Y of closed curves from z, to Zo, the
fundamental group x,(X) appears as a group of permutations on Y.
Any two correspondences of Y, with Y differ by a permutation cor-
responding to an element of x1(X). Thus, for covering spaces, the group
of the bundle is a factor group of the fundamental group of the base space.

1.7. Coset spaces. Another example of a bundle is a Lie group B
operating as a transitive group of transformations on a manifold X.
The projection is defined by selecting a point z, € X and defining p(b)
= b(z¢). If Y is the subgroup of B which leaves z, fixed, then the
fibres are just the left cosets of ¥ in B. There are many natural cor-
respondences ¥ — Y., any b e Y, defines one by y — b-y. However
any two such y — b-y, y — b"y differ by the left translation of ¥ cor-
responding to b='%’. Thus the group @ of the bundle coincides with the
fibre Y and acts on ¥ by left translations. Finding a cross-section for
such a bundle is just the problem of constructing in B a simply-transi-
tive continuous family of transformations.

1.8. The tangent bundle of a manifold. As a final example let X be
an n-dimensional differentiable manifold, let B be the set of all tangent
vectors at all points of X, and let p assign to each vector its initial point.
Then Y, is the tangent plane at 2. It is a linear space. Choosing a
single representative Y, linear correspondences ¥, — ¥ can be con-
structed (using chains of coordinate neighborhoods in X ), but not
uniquely. In this case the group G of the bundle is the full linear
group operating on Y. A cross-section here is just a vector field over
X. The entire bundle is called the tangent bundle of X.
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1.9. Generalizations of product spaces. It is to be observed that
all the preceding examples of bundles are very much like product
spaces. The language and notation has been designed to reflect this
fact. A bundle is a generalization of a product space. The study of
two spaces X and ¥ and maps f: X — Y is equivalent to the study of
the product space X X Y, its projections into X and Y, and graphs of
maps f. This is broadened by replacing X X Y by a bundle space B,
sacrificing the projection into ¥, but replacing it, for each z, by a family
of maps Y,— Y any two of which differ by an element of a group G
operating on Y. The graphs of continuous functions f: X — Y are
replaced by cross-sections of the bundle.

This point of view wouldlead one to expect that most of the concepts
of topology connected with pairs of spaces and their maps should
generalize in some form. This is sustained in all that follows. For
example, the Hopf theorem on the classification of maps of an n-com-
plex into an n-sphere generalizes into the theory of the characteristic
cohomology classes of a sphere-bundle.

The problems connected with bundles are of various types. The
simplest question is the one of existence of a cross-section. This is of
importance in differential geometry where a tensor field with prescribed
algebraic properties is to be constructed. Isthe bundle equivalent to a
product bundle? If so, there exist many cross-sections. What are the
relations connecting the homology and homotopy groups of the base
space, bundle, fibre, and group? Can the bundle be simplified by
replacing the group G by a smaller one? For given X, Y, G, what are
the possible distinct bundles B? This last is the classification problem.

§2. COORDINATE BUNDLES AND FIBRE BUNDLES

2.1. The examples of §1 show that a bundle carries, as part of its
structure, a group @ of transformations of the fibre ¥. In the last two
examples, the group G has a topology. It is necessary to weave @ and
its topology into the definition of the bundle. This will be achieved
through the intermediate notion of a fibre bundle with coordinate systems
(briefly: “coordinate bundle’”). The coordinate systems are elimi-
nated by a notion of equivalence of coordinate bundles, and a passage to
equivalence classes.

2.2. Transformation groups. A fopological group G is a set which
has a group structure and a topology such that (a) g~! is continuous for
g in G, and (b) g.g9: is continuous simultaneously in g, and g., i.e. the
map G X G — @ given by (g1,92) — ¢1g2 is continuous when ¢ X @ has
the usual topology of a product space.

If G is a topological group, and Y is a topological space, we say
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that G s a topological transformation group of Y relative to a map
7t @ X Y— Y if (i) 9 is continuous, (ii) n(e,y) = y where ¢ is the
identity of G, and (iii) 7(gig2,y) = n(g1,n(g2,y)) for all g;,g2 in G and y
in?Y.

As we shall rarely consider more than one such 5, we shall abbreviate
7(¢9,y) by g-y. Then (ii) becomes ey = y and (iii) becomes (g:g2)'y =
g1'(g2’y). For any fixed g, y — gy is a homeomorphism of ¥ onto
itself; for it has the continuous inverse y — g~1y. In this way 9
provides a homomorphism of G into the group of homeomorphismsof Y.

We shall say that G is effective if g-y = y, for all y, implies g = e.
Then @ is isomorphic to a group of homeomorphisms of ¥. In this
case one might identify G with the group of homeomorphisms, however
we shall frequently allow the same @ to operate on several spaces.

Unless otherwise stated, a topological transformation group will be
assumed to be effective.

2.3. Definition of coordinate bundle. A coordinate bundle ® is a
collection as follows:

(1) A space B called the bundle space,

(2) a space X called the base space,

(3) amap p: B — X of B onto X called the projection,

(4) a space Y called the fibre,

(6) an effective topological transformation group @ of Y called the
group of the bundle,

(6) a family {V;} of open sets covering X indexed by a set J, the Vs
are called coordinate neighborhoods, and
(7) for each j in J, a homeomorphism

¢ ViXY—-p (V)

called the coordinate function.

The coordinate functions are required to satisfy the following
conditions:

(8) _ po; (z,y) = z, forzeV;,ye?,
(9) if the map ¢;.: Y — p~(z) is defined by setting
$;=(y) = éi(zy),
then, for each pair 7,j in J, and each z ¢ V; N\ V;, the homeomorphism
$iabizt Yo Y

coincides with the operation of an element of @ (it is unique since G is
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effective), and
(10) for each pair ¢j in J, the map
giic ViN V,'—) G

defined by g;i(z) = ¢7.1b:.» is continuous.

It is to be observed that without (5), (9) and (10) the notion of
bundle would be just that of §1.1. The condition (9) ties G essentially
into the structure of the bundle, and (10) does the same for the topology
of G.

Asin §1, we denote p~'(z) by Y, and call it the fibre over .

The functions g5 defined in (10) are called the coordinate transforma-
tions of the bundle. An immediate consequence of the definition is
that, for any 4,5,k in J,

(11) g3 (2)g5(x) = gui(2), zeVinNV;N\ Vs
If we specialize by setting ¢ = 7 = k, then
(12) gi(x) = identity of G, zeV,
Now set 7 = k in (11) and apply (12) to obtain
(13) g9i(z) = lgui(2)] ™, zeV;N Ve
It is convenient to introduce the map
(14) pi: p(V)—-Y
defined by
pi(b) = ¢;3(b) where z = p(b).

Then p; satisfies the identities
(14) poizy) =y,  $i(p(0),pi(b)) = b,

g5(p(®)) pi(b) = p;(b), pd) eV:NV,

2.4. Definition of fibre bundle. Two coordinate bundles ® and &’
are said to be equivalent in the strict sense if they have the same bundle
space, base space, projection, fibre, and group, and their coordinate
functions {¢;}, {¢;} satisfy the conditions that

(15) Jui (2) = ¢ ¢im zeV,NV,
coincides with the operation of an element of G, and the map
Jrit Vj N V;, -G

80 obtained is continuous.
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This can be stated briefly by saying that the union of the two sets
of coordinate functions is a set of coordinate functions of a bundle.

That this is a proper equivalence relation follows quickly. Reflex-
ivity is immediate. Symmetry follows from the continuity of ¢ — ¢~
Transitivity depends on the simultaneous continuity of (g1,g2) — ¢192.

With this notion of equivalence, a fibre bundle is defined to be an
equivalence class of coordinate bundles.

One may regard a fibre bundle as a “maximal” coordinate bundle
having all possible coordinate functions of an equivalence class. As our
indexing sets are unrestricted, this involves the usual logical difficulty
connected with the use of the word “all.”

2.6. Mappings of bundles. Let & and ® be two coordinate
bundles having the same fibre and the same group. Byamaph: ®—
®’ is meant a continuous map h: B -— B’ having the following
properties

(16) h carries each fibre Y, of B homeomorphically onto a fibre Y of
B’, thus inducing a continuous map h: X — X’ such that

‘p,h = }:’P,

(17) if zeV;N\E(V}), and kh,: Y,— Y. is the map induced by
h (' = h(z)), then the map

01i(%) = rhatiz = Drhadis
of Y into Y coincides with the operation of an element of G, and

(18) the map
Jric ViM E_I(V;) -G

so obtained is continuous.

In the literature, the map % is called ““fibre preserving.”” We shall
use frequently the expression ‘‘bundle map” to emphasize that h is a
map in the above sense.

It is readily proved that the identity map B — Bisa map ® — ®in
this sense. Likewise the composition of two maps ® — ®’ — ®” is
also a map 8 — ®"’.

A map of frequent occurrence is an inclusion map ® C ®’ obtained
as follows. Let ®' be a coordinate bundle over X’, and let X be a sub-
space of X’. Let B = p'~'(X), p = p’|B, and define the coordinate
functions of ® by ¢; = ¢;{(V; N\ X) X Y. Then ® is a coordinate
bundle, and the inclusion map B — B’ isamap 8 — ®'. We call ® the

~portion of ® over X (or ® is @' restricted to X), and we will use the
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notations
® = ®'|X = ®y.

The functions §i; of (17) and (18) are called the mapping transforma-
ttons. There are two sets of relations which they satisfy:

(19) Gi(2)g5(2) = gux), ze ViNV;NRY(VY),
g (@) i) = §ii(2), zeV,NEH(ViN V).

These are verified by direct substitution using the definitions (10) and
7).

2.6. Lemma. Let®, ®' be coordinate bundles having the same fibre Y
and group G, and:let h: X — X’ be a map of one base space into the other.
Finally, let i ViN\E2(Vi) — G be a set of continuous maps satis-
Jying the conditions (19). Then there exists one and only one map h: ®
— ®' inducing k and having {Fa} as its mapping transformations.

If p(d) = z lies in V; N A1(V}), define

(20) his(b) = r(h(z),Gis(z) ps (D).

Then hy; is continuous in b, and p'hw;(b) = h(p(b)). Supposez e V,N
ViNh'(Vi, N\ V3). Using the relations (14) and (19), we have
(with ' = h(z))

hij (b) = r(z’,Gri(x)gii(x) pi(b))
= ¢ ,Gus() pi(b)) = hi(D)
= (@' g (") Gui(2) Pi())
= ¢i(@',§u(x) pi(b)) = hu(b).

It follows that any two functions of the collection {hz;} agree on their
common domain. Since their domains are open and cover B, they
define a single-valued continuous function 2. Then p’h = hp follows
from the same relation for hu. If, in (20), we replace b by ¢;.(y),
apply p;, to both sides, and use the relations (14’), we obtain

Pihe;=(y) = Piti(r’,01i(2) Pidi=(¥))
= gii(z)y
which shows that h has the prescribed mapping transformations.

Conversely any h which has the prescribed mapping transformations
must satisfy (20), and therefore A is unique.

2.7. Lemma. Let ®, ®' be coordinate bundles having the same fibre
and group, and let h: ® — ®’ be a map such that the induced map
h: X — X' is 1-1 and has a continuous inverse k~': X' — X. Then
h has a continuous inverse h~: B’ — B,and h"'isamap @' — ®.
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The fact that & is 1-1 in the large is evident. For any z’ in Vi N
R(V3),let x = k~'(z'), and, following (17), define

gin(z') = @i lh—l‘f’k,z"

It follows that gu(z’) = gri(x)~*. Since g — ¢! is continuous in G,
z is continuous in 2, and §i;(z) is continuous in z, it follows that F;(z’)
is continuousinz’. If p'(b') = 2’isin Vi M h(V;), then h~'is given by

h(Q) = ¢;(h1 ('), gin(2) PR (D))
which shows that A~ is continuous on p’~*(V, N\ h(V,)). Since these

sets are open and cover B’, it follows that A~! is continuous, and the
lemma is proved.

Two coordinate bundles ® and ®’ having the same base space, fibre
and group are said to be equivalent if there exists a map 8 — ®’ which
induces the identity map of the common base space.

The symmetry of this relation is provided by the above lemma.
The reflexivity and transitivity are immediate. It is to be noted that
strict equivalence, defined in §2.4, implies equivalence.

Two fibre bundles (see §2.4) having the same base space, fibre
and group are said to be equivalent if they have representative coordi-
nate bundles which are equivalent.

It is possible to define broader notions of equivalences of fibre
bundles by allowing X or (¥,G) to vary by a topological equivalence.
The effect of this is to reduce the number of equivalence classes. The
definition chosen is the one most suitable for the classification theorems
proved later.

2.8. Lemma. Let ®,®' be coordinate bundles having the same base
space, fibre, and group, then they are equivalent if and only if there exist
conltnuous maps

gri: ViNV,—G jied, kelJ
such that
(19" Jri () = Gri (2)gii(), zeV.NV;N\V,
7ii(z) = gu(@)gii(z), zeV,NViN T,

Suppose, first that ®,®’ are equivalent and h: ® — ®’. Define
gri by (17) (note that 2’ = z since % is the identity). The relations
(19) reduce to (19’).

Conversely, suppose the §i; are given. The relations (19’) imply
(19) in the case & = identity. The existence of h is provided by 2.6.

2.9. Let ® be a coordinate bundle with neighborhoods { V;}, and let
{Vi} be a covering of X by an indexed family of open sets such that



