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PREFACE

This textbook was written to provide a clear and concise discussion
of regression and experimental design models. Equal weighting is
given to both of these important topics which are appl{cable, respec-
tively, to observational data and data collected in a controlled man-
ner. The unifying concepts for these topics are those of linear
models so that the principles and applications of such models are
considered in some detail.

We have assumed that the reader will have had some exposure to
the basic ideas of statistical theory and practice as well as some
grounding in linear algebra. Consequently, this text will be found
useful in undergraduate/graduate courses as well as being of interest
to a wider audience, including numerate practitioners.

We felt that it was important to consider variables, which can
be written as columns of data, as geometfic vectors. Behind the vec-
tor notation is always a geometric picture which we believe helps to
make the resultsjintuitlvely plausiblé without requiring an excess of
theory. In this way we have tried to give readers an undersiandlng
of the value and purpose of the methods described, so that the book
is not about the theory of linear models, but their applications. To
this end, we have included an appendix containing seven data sets.
These are referred to frequently throughout the book'and they form
the basjs for many of the problems given at the emd of éach chapter.

iii



jv PREFACE

We assume that the reader will have computer packaxes aveilable.
We have not considered in any detail the problems of numerical anal-
ysis or the methods of computation. Instead we have discussed Lhe
strengths, weaknesses and ambiguitiés of computer output. For the
reader, this means that space-consuming cescriptions of computations
are kept to a minimum. '

We have concentrated on the traditional least squares method but
we point out its possible weaknesses and indicate why more recent
sophisticated techniques are being explored.

We have included’such topics as subset selection procedures,
randomization, and blocking. It is our hope that students, havirg
been introduced to these ideas in the genepal context of the linear
model, will be well equipped to pick up the details they need for
' their future work from more specialiséd texts.

In the first four chapters, we cover the linear model in the
regression context. We consider topics of how to fit a line, how to
test whether it is a good fit, variable selection, and how to iden~
tify and cope with peculiar values. In the remaining four chapters
we turn to experimental design, and consider the problem of con-
structing and estimating meaningful funefions of treatment para-
meters, of utilising structure in the experimental units as blocks,
and of fitting the two together to give a useful experiment. ‘

This book represents the final version of course notes which
have evolved over several yeérs. We would like to thank -our students
for their patienée as the course notes were corrected and improved,
We acknowledge the value of their comments and less tangible react-
jons. Our data sets and examples, with varying degrees of modifi-
cation, have many sources, but we particularly thank John Baker,
SelWwyn Jebson, David Johns:-Mike 0'Caliaghan and Ken Ryba of Massey
University, Dr R, M, Gous of-the University of Natal, 'and Juilie
Anderson of the New Zealand Dairy Research Institute for giving us

access to a wide range of data. : s

Richard J. Brook
Gregory C. Armold
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f
FITTING A MODEL TO DATA

1.1 INTRODUCTION

The title of this chapter could well be the title of this book. 1In

the first four chapters, we consider problems associated witﬁ fitting

a regression model and in the last four we consider'experimentél\ =
designs. Mathematically, the two topics use the same model. The

term regression is used when the model is fitted to observational

data, and experimental design is used when the data is carefully
organized to give the model special properties. For some data, the
distinction may not be at all clear or, indeed, relevant. We éhall
consider sets of data consisting of observations of a variable of
»interest which we shall call y, and we shall assume that these obser- ¢
vations are a random sample from a population, usually infinite, of _'
possible values. It is this population ﬁhich-is of primary interest,
and not the sample, for in trying to fft models to the data we are !
really trying to fit models to the population from which the sample

is drawn. For each observation, y, the model will Sé'bf the form

observed y = population mean + deviation Lo EE " o At

The population mean may depend on the-corbespondihé val@es of a pre~
dictor variable which we often label as x. For this reason,.y is



2 . o REGRESSION AND EXPERIMENTAL DESIGN

called the dependent variable. The deviation term indicates the
individual peculiarity of the 6bservatlon, y, which makes it differ
from the population mean. ' '

As an example, $y could be the price péid for a house in a cer-
tain city. The population mean could be thought of as the mean price
paid for houses in that city, presumably in.a given time period. In
this case the deviation term could be very large as house prices
would vary greatly depending on a number of ?actors Such as-thé’size
and condition of the house as well as its posltidn in the city. In
ﬁew Zealand, each house is given a govermment valuation, GV, which is
reconsidered on a five year cycle. The price paid for a house will
depend to some extent on its GV. The regression model could then be

written in terms of $x, the GV, as:

y - a + B X + € (1.1.2)
price population mean deviation

As the population mean is now Hr{tten as a function of the GV,
the deviations will tend to be smaller. Figure 1.1.1 indicates
possible values of y when x=20,000 and x=50,000. Theoretically, all
values of y may be possible for each value of x but, in practice, the
y values would be reasonably close to the value representing the
population mean.

The model éould easily be extended by adding other: predictor
variables such as the age of the house oﬁ its size. Ea¢h deviation

. b
0 50,000 x

FIGURE 1.1.1 House prices, y, regressed against GV, x.
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term would tend to be smaller now as the population mean accounts for
the variation in prices due to these additional variables. The devi-
ation term can be thought of as accounting for the variations in
brices unexplained by the mean. '

Another example, this time from horticulture, would be a modél
in which y is the yield, in kilograms, of apples per hectare for
different orchards. The populatloh mean could be written as a func-
tion of the amount of fertilizer added, the amount of insecticide
spray used, and the rainfall. In this case, the deviation term would
include unexplained physical factors such as varying fertility of the
soils as well as possible erroré of measurement in weighing the
apples. .

In each of these examples, a model is postulated and as it
relates to the population, of which we know only the small amount of

. information provided by the sample, then we must use some method of
deciding which part of y relates to the population mean anq which to
the deviation. We shall use the method of least squares to do this.

1.2 HOW TO FIT A LINE
1.2.1 The Method of Least Squares

As the deviation term involves the unexplained variation in y,. we try
to minimise this in some way. Suppose we postulate that the mean
value of y is a function of x. That is

E(y) = f(x)

THen for a sample of n pairs of y's with their corresponding x's we
have

vy, = £(x,) o+ g . 1sisn
observed y mean of 'y " deviation . : (1.2.1)

The above notation assumes that the x's are not random variables
but are fixed in advance., If the x's were in fact random variables

we should write
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£lx;) = Ely; | X = x)

H

mean of Yi given that Xi= xi

which gives the same results. We will therefore assume in future
that the x's are fixed.

The simplest example of a function f would arise if y was
proportional to x. We could imagine a situation wnere an inspector
of weights and measures set out to test the scales used by shop-
keepers. In this case, the x's would be the weights of standard
measures while y's would be the corresponding weights indicated by
the shopkeeper's scales. The model would be

Yy - B, ' €4
weight shown parameter deviation (1.2.2)
by scales standard measure ,

The mean value of y when x = Xi 1is given by

E(yi) = Bxi = f(xi) (1.2.3)

This is called a regression curve., 1In this simple example we would
expect the parameter g8 to be 1, or at least close to 1. We think of
the parameters as being fixed numbers which desceribe some attributes
gf the population.

The readings of the scales, the y's, will fluctuate, some being
above the mean, f(x), in which case the deviation, ¢, will be posi-
tive while others will be below the mean and the corresponding e will
be negative.

The method of least squares uses the sample of n values of x and
y to estimate population parameters by minimizing the deviations ¢.
More specifically, we seek a value of § which we will label b to

minimize the sum of squares of the ¢;, that is

oo n 2
S = _2 e = _Z [y, - £(x)] , (1.2.4)
i=1 i=1
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If the mean, f(x), has the simple structure of the model (1.2.2)
2 2
S= 7 [y, -8 xi] : : (1.2.5)
Methods of algebra or calculus can be employed to yield
n
T ly, -0 x )% =0 (1.2.6)

i=1

Rearranging (1.2.6), the least squares estimate of B8 is the value b

which solves the equation

. 5 . .
CIXgy/IX] (1.2.7)

o
3
o
1]

This equation is called the normal equation. For those who appreci-
ate calculus, it could be noted that this equation (1.2.7) can also

be written as

- - 8f
) Ly, r(xi)J : - 0 S (e

where %% is the partial derivative of f(x;8) with respect to 8. For

this simple model without a constant, we have:

the regression curve is E(y;) = f(x;) = 8x,

and the estimate of it is 91 = f(xi)ﬁ - bx; (1.2.9)

Equation 1.,2.9 is called the prediction curve.' Notice that:

(1) §i estimates the mean value of y when x = Xxj.
(ii) The difference y; -~ yj = €j , which is called the resid-
ual. )
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(111) Parameters are written as Greek letters.

(iv) Estimates of the parameters are writter in Roman letters.

Even with the simple problem of calibration of scales it may be
sensible to add an intercept term into the model for it may be con-
ceivable that all the scales weigh consistently on the high side by

an amount- a. The model is then

yg = a+ Bxi + € (1.2.10)

i

The normal equations become

ar
) [yi - f(x%)] ta - 0

3
) Ly, - r(x)] % -0 (1.2.11)

From (1.2.11), or using algebra, and noting that Iaj; = na, we obtain
an + bl xi = I y1

afx, +btg x2 ~ I x (1.2.12)

Xy i 1¥i

Elementary texts give the solution of these normal equations as
- - - 2 )
b = [z (xi~x)(y1-y)]/[z (x,=x) ] (1.2.13)
a = ; - bx

Here, x and ; are the sample means.
It is easy to extend (1.2.12) to many variables. For a model
with k variables we need to use double subscripts as follows

yi = Boxio + 51x11 + ese ¢ kaik + ei

where xjg = 1 if an intercept term is included. The normal equations

are
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co c1 Ck cy
2
RO by Ixyo" * bydxyox .y +eect b Ixiox, = Ixjoy,

nj bon

2
11%50 * By Ixjy  teeer b lx

NIV LI A

. .
. :

2
Rk bo)'_xikx10 + b1):x1kx11 teest bk):xik o= Zx“‘y1 (1.2.14)

Notice that RO (Row 0) involves xg in every term and in general Rj
involves xj, which.is analagous to (1.2.11) with the derivative taken
with respect to Bj. Similarly CO (Col 0) involves Xg in every term,
and in general Cj involvea'xj and Cy involves y in every term.

Example 1.2.1

Consider the simple example of the calibrating of scales where x kg
is the "true" weight and y kg the weight indicated by a certain
scale. The values of x and y are given in Table 1.2.1. For the
model without an intercept term

Y = bx = 0.97 x from (1.2.7)

If an intercept term is included, the normal equations of (1.2,12)

become

5.0a+ 7.5 b = 7.55
7.5 a+13.75 b = 13.375

TABLE 1.2.1 Scale Calibration Data

y b4

0.70 0.5
.15 1.0
1.35 . 1.5
2.05 2.0
2.30 2.5

- ——-

Ly = T7.55 IX = 7.5

Ixy = 13.375 . xS = 13.75
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FIGURE 1.2.1 Prediction curves. a: with intercept, b: no intercept.

The solution to these equations is a = 0.28, b = 0.82 giving the pre-

diction curve

vy = 0.28 + 0.82 x
The prediction curves are shown in Figure 1.2.1.
1.2.2 The Assumptions of Least tharés

We have used the method‘of least Squares without considering assump-
tions on the model. It is usual, however, to make certain assump-
tions which justify the use of the least squares approach. In par-
ticular, the estimates and predicted values we obtain will be optimal
in the sense of being unbiased and having>£he smallest variance among
all unbiased linear estimates bfovfded that the following four
assumptions hold: ‘

(i) The x values are fixed and not random variables

(ii) The deviations are independent

(iii) The deviations have a mean of zero and

(iv) The variance of the deviations is constant and does not
depend on (say) the x values.

If we add a fifth assumption, namely,

(v) The deviations are normally distributed,
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then the estimates of the parameters are the same as would be
obta;néd from maﬁimpm likelihood, whiéhvgives us'furpher theoretical
assﬁrances. For the develop@ént followed in this book, we are more
concerned that this property ensures that estimates of parameters and
predlcted values of y are also dxstr1buted normally leading to
F-tests and confldence Lntervals based on the t-statlstlcs.‘ In fact,
means, normallty and the method or least squares go hand in hand. It
is npt_very'ﬁurprlsxgg that le@St squgres,lqyan optimal approach ;f

the above assumptions are true.
1.2.3 Other Ways of Fitting a Curve

The main problem with the approach of least.squares is that a large
deviation wiil have . an even larger square aand.this deviation may have
an unduly large influedce on the fitted curve. To guard against such
d;atortxons we. gould .try to isolate large dev1at10ns. We consider.
this in more deta11 in Chapter k under outlxers _and sensxtlve points.
Alternatlvely, we could seek estimates which minimize a different
function of the deviationsa. .
Af the model is expressed in terms. of the populatlon median of
Y, rather than its mean, another method of fitting a curve would be
by minimizing T, the‘sum of the ab§qlqpe values Qf deviations, tbat

is .-

3
13
3

™

il

Although this is a sensxble approach whlch works well, thé actual
mathematics is dlfflcult when the dlstrlbutxons of estimates are

sought. Hogg (1974) suggesta m1n1m121ng
T = I |gl? wien 1¢pe2
and p = 1.5, in particulér. may be a reasonable compromise. Again it

is difficult to determine the exact distributions of the resulting

estimates. If we are not so much interested in testing hypothesis as



