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Preface

The statistical mechanics of dilute systems of independent particles at
equilibrium is a subject which is essentially fully developed. The prac-
ticing chemist should be able to apply this theory with assurance and
accuracy to calculate the thermodynamic properties of substances in the-

.-ideal-gas state from molecular structure data.

My first objectives have been to develop this theory in a simple, logi-

" cal, and understandable way, and to describe the applications in sufficient

detail, with illustrative problems, so-that the reader can acquire the
desired skill in this elementary part of the subject.
In the latter part of the book, I have tried to give a simple but rigor-

ous account of the theories of the canonical ensemble and of the grand '

.ensémble for treating systems of interacting particles. - Several rather

elementary but important examples are then studied, to illustrate the
apphcatlons of these general thcories. The most prominent and impor-
tant manifestation of fluctuation phenomena for the experimental scien-

cha.pt;er on fhictuations. However, I have not included a serious dis-
cussion of practical theories of liquids and dense gases. This is an

" important topic in statistical mechanics but it is difficult and compli-
‘cated. The theoretical calculations do not as yet give good agreement:

- with experiment, There are several excellent treatises by experts in

- the field, and I prefer to refer the interested student to this literature.

- T hope that I have carried the theory of systems of interacting particles

far enough to provide a good foundation for such further study.

In addition, the latter half of the book pre’sents discussions of some
topxcs——paramagnetxsm, dielectrics, and ionic solutions—essentially from
the point of view of the statistical mechanics of independent pm-t'.lcles———l

but with at 1east an indication of how the theories of the'canomcal AR

- tist is noise. - I have therefore included a discussion of this topic in the .

ensemble and the grand ensemble can be apphed when mterpartlcle inter- K

actions are important.
This text has developed from my lecture notes for a one-year graduate
course at the California Institute. Many of the students are first-year

graduate students (with an occasional bright senior) who have not had

vit



vl DA rm.\ce .
a serious course in quantum mechamcs, although they are usually takxng-'
such a course simultaneously., I have therefore included a chapter which
is an introductory discussion of the relevant parts of quantum mechanics.
Fortunately, the principles of equilibrium statisfical mechanics can be
developed very satisfactorily on the basis of an elementary and unsophis--
- ticated formulation of quantum mechanies. - ‘
= I hope that the problem§ are instructive and/or mterestmg "Theydo
not however cover the principles and their application so well that the . L
ability to'do them demonstrates ‘a mastery of -statistical mechanics as. =~
expounded in the text. Therefore, in éxaminations and homework
, asmgnments in addition to problems I often ask for derivations which
- are given in the text. Some problems are inserted in the body of the text - -
because I consider it desirable that they be done before proceeding further. ' -
. At the end-of the course, I usually ask for a short paper on a subject
of the student’s own choosing. There is a tendency for. the student to' - -
“bite off more than he can chew; nevertheless, the results are geperally -~ .
healthy. * Occasionally, I ask my students to make up some new prob-
lems and, if possible, to solve them. The results of this assignment are. '
interesting and informative. Several of the problems in the mxt were.
obtained in this way. -
I have solicited and received help and advice from so many- colleagues LT
that it would be unwise to attempt individual acknowledgments. The g .
_'students in my cousse have contributed much to this book by their'
conscious criticisms and by my observations of -their natural reactions: ,
(mcludmg some yawning and sleeping). The cheerful cooperation and- " .
_painstaking care of Mrs. Ruth Hanson, Della Brown, and Allene Luke - ,,{
~ of the departmeqtal gecretarial staff are deeply appreciated. ©
I do have a special debt ta Dr. Verner Schomaker, Dr. Robert Mazo, . .
and the.late Dr. William Moffitt. Each, in his own way, has added ,
greatly to my understandmg by answermg many questmns and dlscussmg .,
many problems with me. - o ';‘.‘3,
I am dedicating this book to William Moffitt as an expression of my-
admiration and affection. . It was from my conversations with him dur- " "
ing my one-year stay at Harvard that I first gained confidence in the . '
validity- of my,approach to statistical mechanics, - Without this confi- |
dence, I would not have had the courage to write this book. In hisown |
work, Bill Moffitt was.a theorist with a passion for elegance and gener-
a.llty, but he insisted that the function of the theorist was to be usgful
I hope that; were he still alive, he would think thm book useful.
. LT
Norman Damdson S ot

?
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“Introduction N

\
A macroscopic system at equxhbnum has certain properties, for
-example, the energy, heat capacity, entropy, volume, pressure, and
chefficient of expansion, which are of particular interest in thermo-

 dynamics. From the standpoint of thermodynamies, some of these - |

‘quantities must be determined by experimént; the laws of thermo-
dynamics provide relations by hich it is then possible to calculate other
quantities. Thus, if we know from experimént the equation of state of a.
substance in the form V = V{(T,P) and we know the entropy at one pres-
sure, P, we can calculate the entropy at any other pressure and the same
temperature from the thermodynamic relation (8S/0P)r = —(0V/0T)».

Our intuition tells us that it should not be necessary to measure -
. the macroscopic properties of a system but that it should be possible to
" calculaté them if the properties of the constituent molecules and the .

_ laws of force (the intermolecular interactions) between the molecules are
known.

Statistical mechanics is a method and in pra.ctme the method, for
calculating the properties of macroscopic systems from the properties of
the constituent molecules. Quantum mechanics provides the funda-
‘mental laws for calculating the properties of individual molecules and

. their intermolecular interactions. Statistical mechanics starts with these

- results and introduces a statistical hypothesis about the behavior of
systems containing a large number of molecules. (The hypothesis that
-we. shall use is actually that of equal a priori probabilities 6f individual
quantum states; but its exact nature does not concern us right now.). It
is then possible to predlct many of the xmportant propertxes of macro-
‘scopic Bystems.

This is not the only concelva.ble method for making predlctlons about
macroscopic’ systems. One could, in principle, resort to a straight-
forward mechanical calculation. Consider,”for example, & gas containing
10% atoms. Suppose that, in this cese, classical mechanics is & satis-
. factory approximation and that we need not use quantum mechanics.

. It is necessary to know, at some initial time f,.the 3 X 102 position
i R 1 . - .



2 STATISTICAL MECHANICS [Chap. 1

coordinates and the 3 X 1024 veloeity coordinates of all the particles. As
we shall see in the next chapter, one can then, in principle, solve the
equations of motion and calculate the positions and velocities of all the
particles at all future times. - '

There are two difficulties with this direct approach. In the first place,
the calculation is far too complex and cannot actually be performed.
But suppose that, with a fantastically effective computer, it were possible
to calculate the trajectories of all the particles. The results might be a
gigantic tata sheet giving the 3 X 10% position coordinates of the atoms
every 10~ gec. (This interval of time is chosen as reasonable because a
typical atom at room temperature and atmospheric pressure undergoes a
collision about every 10~1° sec.) The history of the system for 1 sec
would require 3 X 1025 entries. Such an enumeration of the data would
be quite indigestible. We would look for a statistical summary of the
dats, and we would calculate certain statistical functions: the number of
atoms with velocities in a certain interval, the number of collisions,
between atoms per second, the average number of atoms thatare within a
given distance of another atom at any particular time, the momentum
exchange with the walls in any time interval, ete.

We shall see that by the methods of statistical mechanics it is possible
to calculate these functions directly, without first calculating the detailed
behavior of the system. A knowledge of these statistical functions is
. usually sufficient for the calcylation of the macroscopic properties of a
system. The statistical mechanical calculation is not just a cowardly
expedient that we resort to because of our inability to make a complete
calculation (although it is that, too); for most problems it contains all the
information that we want about the system without going into unneces-
sary detail *

Equilibrium statistical mechamcs treats the properties of systems at
equilibrium. The calculation of the time-varying properties of a system
which is not at equilibrium is more difficult. We gre then interested in
such properties as viscosity, heat conductivity, paramagnetic relaxation
times, and- chemical reaction rates. This is, in general, nonequilib-
rium statistical mechanics. It is not yet nearly so well developed a
subject as equilibrium statistical mechanics. We shall be principally,
but not exclusively, concerned with topics in equilibrium statistical
mechanics.

Statistical mechamcs,xs firmly based on quantum mechanics. _The

* It is interesting to note, however, that some difficult statistical mechanical prob-
lems are now being studied by detailed calculations of the mechanical behavior of
small prototype systems. In one such calculation, the behavior of a system of hard
spheres containing 32 particles was computed through 7,000 total collisions in an hour
with an IBM-704 computer [B. J Alder and T. E. Wa.mwnght J. Chem, Phys., 2'1
1208 (1957)].
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. usua.l presentatmns of quantum, mechamcs presume a pnor knowledge of
* classical mechanics; furthermore, classical mechanics is directly useful .
for many problems in statistical mechanics..- We shall see that thermo- - '
~ dynamics is closely related to statistical mechanics. Therefore, in the
next three chapters, we review classical mechamcs, quantum mechameu, B
and thermodynamws. o . .

i
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Classical Mechanics”®

_ ‘ 2-1. Introduction. We begin with a brief review of classica] mechan-
ics. We shall derive the equations of motion in Hamiltonian form from
the more familiar Newtonian equations and shall introduce the concept
of phase space.

2-2. Mathematical Prelude. Our object in #his section is to illustrate,
for a simple case, some of the mathematical operations needed in trans-
forming the equations of motion from one system of coordinates to
another. We shall treat the same problem for the general case in the
next section, :

Consider a single particle constrained to move in the 2y plane. New- .
ton’s equations of motion are

2 2,

m%s < mt =T, mfiig=my=F, @1)
where F, and F, are the forces in the z and y directions on the particle,
We assume that the forces are derivable from a potential energy U(z,y),

aU(z,y) _ _3U@=y)

F:=—T F"“—T (2-2)~

and that the potential energy is a function of the position coordinates of = -

the particle, but not an explicit function of time or of the velocities

2 and g. If these conditions are satisfied, the system is said to be
conservative, )

Suppose, for example, tha;c the potential function is

Uz,y) = Y4az? + bry + Yey? - (23
The equations of motion then are ’
m¢ = —ax — by

my = —~bxr —~ cy - (2-4)

* A word of apology is in order. As regards mathematical content, thjs beginning
chapter is one of the more difficult ones in the text. This may be bad pedagogy, but
it is advantageous to base our further studies on a more general formulation of claasical
mechanics than Newton's laws of motion as presented in elementary physics classes.

4



Sec22 CLASSICAL MECHANKS - .5
The equatlons of motion (2-4) can be mtegrated to nge & solution
L C z=z® y=y® - (25
whlch we call a trajectory The particular trajectory depends upon ‘the
initial conditions, for example, the positions and velocities at ¢ = 0, and
there is a family of solutions for different xmtxal condxtlons
- The kinetic energy Kis ~ ) .
K@) = ym(5) + %m( - Ymat o+ Ymi? (26)
The Lagrangian function L is defined as ‘ '
Lydg) = K = U = Ymz* + Jamy* ~ saz? — bay — Yey* (2-7)
If we tra.nsform to polar coordinates, :

zarcosqs

T y=rsin¢ (2'80‘)'
then R .
& = cos ¢ — r&in ¢ . ‘ : "
y=+sin¢+rcosdd - (2-85)
By substitution in (2-8) and (2-3), we find o
3 © K= Ymit 4+ %mr’é‘ © (2-9a)
S U = Yart cos® ¢ + brisin ¢ cos ¢ + Yertsint¢ . (2-0b)
_ g0 that - . : A o -

: L(r,¢,+,¢) - ygmw + J4mrigt — bgart cos’ ¢ | ’
— br?sin ¢ cos ¢ — Ygersin® ¢ (2-9c)
~* We notice that the posmon variable r enters into the expression for K
‘and that the expression is quadratie in the veloeities.

" In Eq. (2-7), we can regard the Lagrangian L as a function of the inde-
" pendent variables z, y, &, and 7. We can then write

aL(ax,y,x,ﬂ) - - oL .
az —oz - by 9y b Y
ForLasa functmn of polar coordm&bes r, 4', f, 4',
aL(fa!?r ¢) = mr? é » . | ) - ) »
Lgr;at’ y¢) = mr&z_afm’é 2bfsln¢008¢ cfm“

g ﬁnd nm.xhr equatmns for 6L-/ or, BL/6¢.

’ -



6 ‘ ; STATISTICAL MECHANICS [Chup. 2

Sometimes the variables which are held fixed during partial differentia-
tion will be indicated by the notation ‘

oL
aé rd.f

This can also be indicated by writing

_ OL(r,,t,¢)
ad

Where the context makes the meaning clear, we shall often write simply

oL
3%

[Incidentally, note the difference between the ways in which a natural
scientist and a mathematician regard function notation. When we write
L(z,y,%,9) we mean the physical quantity, the Lagrangian function,
K — U, expressed in cartesian coordinates, as in Eq. (2-7), and L(r,¢,#,¢)
-means the same physical quantity, K — U, expressed in polar coordinates.
To a mathematician, the function L(z,y,%,j) means the functional form

. L(:c,y,:i:,y) = % &t + —12! yz - %ax2 - bry ~ %cyz

so that L(r,¢,7,¢) would be the same form with r in place of z, ¢ in place
of y, ete.; ie., : :

L(r#,8) = 5 i* + % 6t — bg0r® — bro — Ygog?

For correct mathematical use of function notation, if L(z,y,%,5) is defined
- by (2-7), then the transformation (2-8) would transform L to a new
function M(r,¢,#,4), with

Liz(r,¢),y(r,6),%(r,8,7,$),4(r,$,7,6)] = M(r,$,7,4)
M(r,¢,7,¢) = Ymi* -+ Lsmrig? — L4ars cos?s
X —br?sin ¢ cos ¢ — Lscr? sin? ¢

so that the function M is the function which, in physical language, we
called L(r,¢,7,4) in (2-9c).]'
For arbitrary variations in z, y, £, and g, the variation in L is given by

aL

oL aL ,. , 3L .
dz +@dy+3—i-dx+5§dy
For a particular trajectory, z, y, %, and g are known functions of #. The
variation of L with time can then be calculated from the equation

dL _oLdr  dLdy , 3Ld: | aLdy L. , 3L . , aL . . oL .
= :c+a-yy+35:v+5§y

- matgatwatga- e



Sec. 2-3] CLASSICAL MECHANICS 7

Problem 2-1. For a system of two particles moving in two dimensions, with masses
m, and m» and cartesian coordinates z,, ¥1, Z:, ¥, the kinetic energy is

K = Y¥mi(@} + D) + Mma(2} + 33)

We now replace zi, ¥1, Z3, ¥s by four new variables, X, Y, z1, y1s, where

X = Mzt mazs Y = Tt mays
my + ms my + my
. T2 = T3 — 21 Y12 = ys — Y

X and Y are the coordinates of the center of gravity; 12 and yis are the relative coordi-
nates, which give the position of the second partxcle with respect to the first. Express
K in terms of the velocities X, ¥, &1, #11 in the new system of variables. Explain
the significance of this calculation.

By analogy, you can now write the corresponding expressions for the kinetic energy
for s system of two particles in three dimensions.

Problem 2-2. The transformation between spherical polar coordinates and ca.rtealan
coordinates, as illustrated in Fig. 2-1, is

x = rgin 0 cos ¢
y = rsin sin ¢
2 =rcos @

!

/
7/

P A N —
<

4

Fia. 2-1. Relation between cartesian coordinates and spherical polar coordinates.

Express the kinetic energy of a single particle in terms of its sphericsal coordinates r,
.0 & andt, 4 &

2-8. The Lagrangian Equations of Motion.* There are several formu-
lations of the laws of mechanics that are more general than Newton’s
* The subject matter of the next few sections is discussed invinnumerable texts on.
classical mechanics. There are also clear expositions in Pauling and Wilson, * Intro-

duction to Quanturn Mechanics’’ {21], and Eynng, Walter, and Kimball, *‘Quantum
Chemistry’’ {20].
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equations. The two that we shall consider are the equations of motion
in the Lagrangian form and in the Hamiltonian form. These formula-
tions are easier to apply than Newton’s equations for a number of prob-
lems in mechanies—especiaily when the most suitable coordinate system
is not cartesian coordinates. However, our principal purpose is to derive
Hamilton’s equations, because these equations are used in the formula-
tion of quantum mechanics and because they play a central role in
statistical mechanics. In our treatment, Hamilton’s equations of motion
will be derived fram Lagrange’s equations, which will be derived from'
Newton’s equations.

Consider a system composed of n particles, with masses m,;, .. . ,
mi, . . . , Ma, and cartesian coordinates i1, y1, 21, . . . , Zn, Yn, Zn. ‘

The kinetic energy is given by o

n

K=yy m@+it+s (2-10)
i=1 : '
We assume that there is a poténtial, U(z,, . . . ,2.), which is a function

of the position coordinates only.
Newton’s equations of motion are

U
miE; = "-5;‘
o U .
mr’l/i:"b?/: =1 ...,n (2-11)
5, = — U
miz; on

From (2-10), regarding K as a function of &, ¥;, and 2;, we have

K _
AL;

The Lagrangian function L is defined by

L@y . . - zaitr, - o o in) = K(y, .« . . i) = Uy, .« . . ,zn)  (2-12)

" and we see that

3L _ 3K oL U i
di; 9y oz, om; (2-13)

so that Eqgs. (2-11) can be rewritten as
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‘ d(aL -gg | |

ay‘) éy,* (2-14) s

@5

. These are the equatlons of motion in Lagranglan form for cartesian
coordinates. Let us see what happens to these equations under a ‘trans-
formation of coordinates. Let there be 3n generalized coordinates

g, . .., Qs (center of mass plus internal coordinates, spherical polar =

coordinates, elliptical coordinates, or any other suitable coordinates for
- the problem at hand), which are related to the cartesian coordinates of
the individual particles by the 3n transformation equatxons

- = z:(q, . - . Jq3ﬁ)’
yr=yi(gy, . . -Qm)

| (2-15q0)

2 = g, 1q3w)
zn = zalgy, 1qan)
The velocities are then given by
3n .
AN
.1 249 g
=1 .
. 3n ‘ : .
y;__-zz%;q, i=1,...,n . (2-15b)
jml . -
3n
-\,
in 3g ¥
i=1
We now want to regard z,, . P T z. a8 6n independent
variables for expressing Land ¢y, . . . , qanj gy, - . ., dsn 88 another set

of 6n va.nables for expressing L. The relations between the two sets of '
" variables are given by the 6n equations (2-15). According to Eq..
: (2-15a), the functional relationships between the position coordinates do
- not contain the velocities, so that
a——z‘=21ﬁ=izl— 7 .’= ‘ . ;'v"—- ‘ ;
| 3G~ 3¢; Odi—9 1 1,...,@{—.{1,,..,31& (216)7
Furthermore, according to (2-15b), the velocity y; is a linear function of

.
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all the ¢;, and - ‘

ayi(ql, .« e )q&‘;q.l’ L _"q'a“). = a_y'

3G - 3g; (2-17)
We can now express aL/dg:. and 9L/dg, in terms of the derivatives
. 8L/dx, and 8L/8i;, using the transformatxon relatlons (2-15).
We have

aL E(aLaz, L dy; | OL 3z
az; aq,, 0Y: 0qx 3z Bq;,

oL 33, , oL ay , oL 95
+ Zl (0-’5'39 6:)59@ 9z; 3¢, k=1, ..

(aL a$. aL ay.- BL 6z;>

»3n  (2-18)

OQI; 37: 96 T oy M T 3293

aL 82:. 8L 3y; , oL 24)
+ 2 3%; dqa 6y‘ 3G + 3%, s (2-19)

The first sum of terms in (2-19) is zero because dz;/3¢, = 0 [Eq. (2-16)].
In the second sum, we substitute dz;/dg; for 92:/dqs, which is justified by -

Eq. (2-17). Then take the total derivative of both sxdes of (2-19) with
respect to time:

ax. @_.t_i_ oL + 95 3z d
dt aq;, aq,, di az. vaq,,dt af/,' aq;,dt
L d (3z\ | oL d (ay. AR
+ Zad:.- dt an) ay. dt (6qa (qu) (@20
In the first sum of (2-20), we set »
4L _iL
di\dz;) 9z
" by Lagrange’s equation. For the s;cbnd sum, we ha.vé
d(om) _ o
AT A

since the order of differentiation is immaterial. With these substltutlons,
(2-20) becomes : ,
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) Z(aLaz, oL oy +§_I__4§31):.‘ -
adk 0Z; 0G: ay; aqg 02,0 v .
oL di; aL s oL 94 — _ ’
+2(6x.0q. 6y‘6qg + 350,/ 'f'_ L. 00,8 @22

We recognize from (2-18) that the nght-hand mde of (2-21) is Just ;

- -8L/3qe.~ Therefore

" d ek aL-@_» |
a(3s) = 5 k=10, (222)4

L " We have thus proved the important theorem that Lagrange’s equ.tlons _
" of motion are the same in all ‘coordinate systems. - If by one means or.

* . another we can express the Lagrangian L = K — U in terms of the =
... coordinates g, ¢, we can immediately” wnte the equations of motion (2-22)
" in the ¢ coordinate syatem‘ . :

Problem 2-3. For a particle moving in three dunenmns under the influence of &

sphencally symmetrical potential U = U(r), use the results of Prob. 2-2 to write out_ e :

“'the La.gra.ngmn and the equations of motion in spherical coordinates. :
- Problem 2-4. Given a system of two particles as in Prob. 2-1,.with the only poten-

- tial their potential of mtemctxon, wb.:clus a function of the relative coordinates only, : o

U=Uzs — T, Y2 — Yy 22— 21) U (219,Y13,212)

e Use Lsgrange 8 equatlons to write the equations of motion for the. system in terma of N

the coordinates X, Y, Z and zis, ¥1s, 212 Desenbe the ngmﬁca.nce of the results in
. words. ’

2-4. Hamilton’s Equations The Lagrangmn functmn L is regarded S

as & function of the 6n coordinates Qly o o oy gom; 1y - oy Gan. We
. shall eliminate the ¢’s as mdependent vana.bles by mtroducmg 3n new -
vanables by the equations

=3(91,---,:an;‘il,_----,ll;!#)‘.,- = | _ :
p== F k=1...,3n (22)

‘By solvmg the 3n equations (2-23), we can express each dasa functxon '
quly v e 3 qQmi Py oo ., Paal

& = gi(q, .. . ,qa;;px, Ce e Pw) j¥ 1, ,3n '(2-24) R

| 'The p variables are called the generahzed momenta correspondmg to the

| . generalized coordinates ¢. The two vana.bles ¢; and p; are spoken of a8 * .. o

‘“being cenjugate variables.
We shall define Hamzlton s function H as bemg the total energy K + U:

H(qx, cee ,qn,pl, : .. ,pgn) = K +U 2K - L - (2-25) §
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In (2-25) we can think that K and L were initially given as functions of
the ¢'s and ¢’s; by using Eq. (2-24), they can be expressed as functions of
the ¢’s and p’s.
It is essential to realize that the kinetic energy is always a quadratic
function of the velocities ¢;, that is, -
3z 3n
K(gs, . - . qanily, - - - 4am) = E Y. dsasds

T=] jm=}
= angi + 2ai24:14s + - - - + 20sm-1.3nGin—1G3 + Cansndl, (2-26)
The coefficients a;; in (2-26) are in general functions of the ¢'s as in -
(2-9a), where the coefficient of ¢ is L4mr®. We can always choose the
coeflicients a;; = a; in the double sum of (2-26), so that we write, for -
example, 2a;.1¢s instead of a12§1¢2 + a21d2g:. Then, since U is not a
function of the velocities, '

_L _ K = U) _ aK(ay . . . quidn - . o )
gk g A .
-2 E awd; (2:27)
=1

[Readers who are not experienced with general summation notation can
verify (2-27) by -differentiating the expression for K as displayed in
detail in the right-hand expression of (2-26).}

It follows from (2-27) that

3n 7 38n 3n
Yo=Y Y 2hag; = 2K (2-28)
, k=1 ¥<h iS4
We can therefore rewrite (2-25) as
H(gy, - . . gon;Py - - - ,Pim) _
) 3a . )
= Y mide = L(gy, - - . Gonsdy, - - - ) (2-20)
E=1

where it is understood that the ¢’s can be expressed in terms of ¢'s and p's
by (2-24). [We may remark that Eq. (2-29) is commonly taken as the
definition of the Hamiltonian function; it has the advantage of being .
. applicable for the more general case of nonconservative systems. For
our purposes, the definitions (2-29) and (2-25) are equivalent.] ,

For an arbitrary variation in the ¢’s and p’s, we have, from (2-29),
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