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Preface

This is a companion- volume to Plane Answers to Compler Questions: The
Theory of Linear Models. It consists of six additional chapters written in the
same spirit as the last six chapters of the earlier book. Brief introductions
are given to topics related to linear model theory. No attempt is made
to give a comprehensive treatment of the topics. Such an effort would be
futile. Each chapter is on a topic so broad that an in depth discussion would
require a book-length treatment.

People need to impose structure on the world in order to understand it.
There is a limit to the number of unrelated facts that anyone can remem-
ber. If ideas can be put within a broad, sophisticatedly simple structure,
not only are they easier to remember but often new insights become avail-
able. In fact, sophisticatedly simple models of the world may be the only
ones that work. I have often heard Arnold Zellner say that, to the best
of his knowledge, this is true in econometrics. The process of modeling is
fundamental to understanding the world.

In statistics, the most widely used models revolve around linear struc-
tures. Often the lincar structure is exploited in ways that are peculiar to
the subject matter. Certainly this is true of frequency domain time series
and geostatistics. The purpose of this volume is to take three fundamental
ideas from standard linear model theory and exploit their propertics in ex-
amining multivariate, time series, and spatial data. In decreasing order of
importance to the presentation, the three ideas are: best linear prediction,
projections, and Mahalanobis’s distance. (Actually, Mahalanobis’s distance
is a fundamentally multivariate idea that has been appropriated for use in
linear models.) Numerous references to results in Plane Answers are made.
Nevertheless, I have tried to make this book as independent as possible.
Typically, when a result from Plane Answers is needed not only is the ref-
erence given but also the result itself. Of course, for proofs of these results
the reader will have to refer to the original source.

I want to reemphasize that this is a book about linear models. It is not
traditional multivariate analysis, time series, or geostatistics. Multivariate
linear models are viewed as linear models with a nondiagonal covariance
matrix. Discriminant analysis is related to the Mahalanobis distance and
multivariate analysis of variance. Principal components are best linear pre-
dictors. Frequency domain time series involves linear models with a pecu-
liar design matrix. Time domain analysis involves models that are linear
in the parameters but have random design matrices. Best linear predic-
tors are used for forecasting time series; they are also fundamental to the
estimation techniques used in time domain analysis. Spatial data analysis
involves linear models in which the covariance matrix is modeled from the
data; a primary objective in analyzing spatial data is making best linear
unbiased predictions of future observables. While other approaches to these
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problems may yield different insights, there is value in having a unified ap-
proach to looking at these problems. Developing such a unified approach is
the purpose of this book.

There are two well-known models with linear structure that are con-
spicuous by their absence in my two volumes on linear models. One is
Cox’s (1972) proportional hazards model. The other is the generalized lin-
ear model of Nelder and Wedderburn (1972). The proportional hazards
methodology is a fundamentally nonparametric technique for dealing with
censored data having linear structure. The emphasis on nonparametrics
and censored data would make its inclusion here awkward. The interested
reader can see Kalbfleisch and Prentice (1980). Generalized linear models
allow the extension of linear model ideas to many situations that involve in-
dependent nonnormally distributed observations. Beyond the presentation
of basic linear model theory, these volumes focus on methods for analyzing
correlated observations. While it is true that generalized linear models can
be used for some types of correlated data, such applications do not flow
from the essential theory. McCullagh and Nelder (1989) give a detailed
exposition of gencralized linear models and Christensen (1990) contains a
short introduction.
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Chapter I

Multivariate Linear Models

Chapters I. II, and III examine topics in multivariate analysis. Specifically,
they discuss multivariate linear models, discriminant aualysis, principal
components, and factor analysis. The basic ideas behind these subjects are
closely related to linear model theory. Multivariate linear models are simply
linear models with more than one dependent variable. Discriminant analysis
is closely related to both Mahalanobis’s distance (cf. Christensen, 1987,
Section XIII.1) and multivariate one-way analysis of variance. Principal
components are user-constructed variables which are best linear predictors
(cf. Christensen, 1987, Section VI.3) of the original data. Factor analysis
has ties to both multivariate linear models and principal components.

These three chapters are introductory in nature. The discussions benefit
from the advantage of being based on linear model theory. They suffer from
the disadvantage of being relatively brief. More detailed discussions are
available in numerous other sources, e.g., Anderson (1984), Arnold (1981),
Dillon and Goldstein (1984), Eaton (1983), Gnanadesikan (1977), Johnson
and Wichern (1988), Mardia, Kent, and ‘Bibby (1979), Morrison (1976),
Muirhead (1982), Press (1982), and Seber (1984).

As ‘mentioned above, the distinction between multivariate linear models
and standard (univariate) linear models is simply that multivariate linear
models involve more than one dependent variable. Let the dependent vari-

ables be y;,...,y,. If n observations are taken on each dependent variable,
we have y1,...,¥q. i = 1,...,n. Let Y7 = [y;1,...,¥n1) and, in general,
Yr = [y1hy- -+ ¥nr!, h =1,....q. For each h, the vector Y}, is the vector of
n responses on the variable y, and can be used as the response vector for
a linear model. For h = 1,...,q, write the linear model

Y = X3Br +en. E(en) =0, Coviep) = opnl (1)

where X is a known n X p matrix that is the same for all dependent vari-
ables, but §;, and the error vector e, = [e1p.....€,,]" are peculiar to the
dependent variable.

The multivariate linear model consists of fitting the ¢ linear models si-
multaneously. Writ< the matrices

- N
Ynxq = i)ls"--)qjq

Bpxg == ;31‘.A7P

and
€nxqg = it} (q
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The multivariate linear model is
Y=XB+e. (2)

The key to the analysis of the multivariate lincar model is the random
nature of the n x ¢ error matrix e = [e;,]. At a minimum, we assume that
E(e) =0 and
: ifi=1d

Ohh'
Cov{ein, evn) = {0 ififd

1 ifi=14
bir = {0 if i # 4,

then the covariances can be written simply as

Let

Cov{ein, evn') = opnrbiir .

To construct tests and confidence regions we assume that the e;;’s have a
multivariate normal distribution with the previously indicated mean and
covariances. Note that this covariance structure implies that the error vec-
tor in model (1) has Cov(ex) = onnl as indicated previously.

An alternative but equivalent way to state the muitivariate linear model
is by examining the rows of model (2). Write

Y -
Y = R
[ ¥ |
fo ]
X = I
|z}, ]
and ,
£y
€= :
En
The multivariate linear model is
v=eiB e
i =1,...,n. The error vector ¢; has the properties
E(e) =0,

Cov (&;) = Zgxq = [onn'] ,
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and for ¢ # j
COV(E{,E_,’) = 0.

To construct tests and confidence regions, the vectors &; are assumed to
have independent multivariate normal distributions.

ExXERCISE 1.1. For any two columns of Y say Y, and Y,, show that
Cov(Y,,Y,) =02, 1.

I.1 Estimation

The key to estimation in the multivariate linear model is rewriting the
model as a univariate linear model. The model

Y=XB+e, E(e) =0, Cov(ei;l,ei/h: = Gpp by (1)

can be rewritten as

Y X 0 - 01 e;
Y, : B ez
=)0 X ‘ Sl (2)
: : .0 : :
Yq 0 0 X ﬂq eq
where the error vector has mean zero and covariance matrix
allln 012171 Tt Ulqln
owln ol - oyl,
. 3)
O1gln O2qln - Ogqln

Recalling that the Vec operator (cf. Christensen, 1987, Definition B.6)
stacks the columns of a matrix, the dependent variable in model (2) is
precisely Vec(Y). Similarly, the parameter vector and the error vector are
Vec(B) and Vec(e). The design matrix in (2) can be rewritten using Kro-
necker products (cf. Christensen, 1987, Definition B.5). The design matrix
is I; ® X where I, is a g x ¢ identity matrix. Model (2) can now be rewritten
as

Vec(Y') = [I, ® X]Vec(B) + Vec(e) . (4)

The first two moments of Vec(e) are
E[Vec(e)] =0

and, rewriting (3),
Cov[Vec(e)l =X @ I, . (5)



4 1.1. Estimation
EXERCISE 1.2.  Show that [A ® B][C ® D] = |[AC ® BD] where the ma-
trices are of conformable sizes.

For estimation, the nice thing about model (1) is that least squares esti-
mates are optimal. In particular, it will be shown that optimal estimation
is based on

Y =XB=My

where M = X(X'X)~ X' is, as always, the perpendicular projection opera-
tor onto the column space of X, C(X). This is a simple generalization of the
univariate linear model results of Christensen (1987, Chapter II). To show
that least squares estimates are best linear unbiased estimates, (BLUE’s),
apply Christensen’s (1987) Theorem 10.4.5 to model (2). Theorem 10.4.5
states that for a univariate linear model Y,,x; = X3+e,E(e) = 0, Cov(e) =
0%V, least squares estimates are BLUE's if and only if C(VX) C C(X).

The design matrix in (2) is [I; ® X]. The covariance matrix is [Z ® I,,].
We need to show that C([Z & I,,][I, ® X]) ¢ C([I, ® X]). Using either
Exercise 1.2 or simply using the forms given in (2) and (3)

EQLI,®X] = [EX]
(TuX Uqu
01gX o+ 0geX

= [,eX|EeL,.

Recalling that C(RS) C C(R) for any conformable matrices R and S, it is
clear that

CIER® L] ® X)) = (I, X][E® 1)) C C([I, ® X)).

Applying Christensen's Theorem 10.4.5 establishes that least squares esti-
mates are best linear unbiased estimates.

To find least squares estimates, we need the perpendicular projection
.operator onto C ([, ® X]). The projection operator is

P= [l ® X]({Ig & X],{]q 2 X)) ;3 X]
Because [A® B)' = (A’ ® Bl wr have

Uw XV, =X = 1,2 X[, X
= I, 2X'X].

It is casily seen from the definition of a generalized inverse that

(o XN =1L (X' )7,
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It follows that

I, ® X\, & (X'X) |[I,® X]
I, ® X(X'X)” X'}

(7, ® M].

b
o

H

By Christensen (1987, Theorem 2.2.1), in a univariate linear model Y;, ., =
X[ + e least squares estimates 3 satisfy X = MY, «,; thus for the uni-

variate linear model (4), least squares estimates of Vec(B), say Vec(B),
satisfy

(I, ® X]Vec(B) = [I, & MVec(Y),
i.e., R
XB MY,
X8, MY,

In terms of the multivariate linear model (1), this is equivalent to

XB = MY.

MAXIMUM LIKELIHOOD ESTIMATES

Write the matrices Y and X using their component rows,

’ ]

Y Iy
Y=|: and X =

' !

y’ll Iﬂ

To find maximum likelihood estimates (MLE‘;s), we assume that ¥ is non-
singular. We also assume that the rows of Y are independent and y, ~
N(B’z;,£). The likelihood function for Y is

L(XB,%) = [](@r) (5" exp [~(yi - B'r)'S " (g - B'e,)/2]

i=]

and the log of the likelihood function is

l n
¢XB,%) = - L log(2r) - 5 log(1%)) - 5 (= Bn)S 7 (s - Bla,).
i=1

Consider model (2). As for any other univariate linear model, if the
nonsingular covariance matrix is fixed, then the MLE of [I, ® X [Vec(B)
is the same as the BLUE. As we have just seen, least squares cstimates
are BLUE’s. The least squares estimate of X B does not depend on the
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covariance matrix; hence, for any value of £, X B = MY maximizes the
likelihood function. It remains only to find the MLE of Z.

The log-likelihood, and thus the likelihood, are maximized for any ¥ by
substituting a least squares cstimate for B. Write B = (X'X)~ X'Y. We
need to maximize

UXB, %) = -1 log(2m) ~ 3 log(|Z])

1 n
=52~ YX(X'X) 2. ) ! (w - Y X(X' X))
1=1
subject to the constraint that ¥ is positive definite. The last term on the
right-hand side can be simplified]. Define the n x 1 vector

pi = (0,...,0,1,0,...,0)

with the 1 in the ith place.

D =Y XX X) 2 S g - VX (X' X))
i=]
= D pY - X(X'X) XYY - V' X(X'X)X")p;
=1
= Zpg(z — MYXWY(T - M)p;

=1

= trl(/ - M)YST'Y'(I - M)]

= tr[Z7Y/(1 - M)Y].
Thus our problem is to maximize
(X B.5) = - log(2r) ~ 2 log(]5]) - %tr[E‘lY'(l —M)Y]. (6
We will find the maximizing value by setting all the partial derivatives
(with respect to the 0y;°s) equal to zero. To find the partial derivatives, we

neced part (3) of Proposition 12.4.1 in Christensen (1987) and a variation
on part (4) of the proposition, cf. Exercise 1.8.14. The variation on part

(4) is that
t.r[r'f?i} ™)

= |87, .

i

9

t7

where the symmetric g x ¢ matrix T;; has ones in row ¢ column j and row j
column 7 and zeros elsewhere. Part (3) of Christensen’s Proposition 12.4.1
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gives
= Y '—X (8
80’112 (q(fi] )
= - iT,;jE_l .

We need one final result, involving the derivative of a trace. Let A(s) =
[a;;(s)] be an r x 7 matrix function of the scalar s.

Ed‘;tr[A(s)] = Zg;fap(b; S 4 arp(8))]
"~ dayi(s)
= hali 9
" 8
o)
h ds |
From (8), (9), and the chain rule
(9 1 ] 1
S——tr[STY(I - M = —-—VYI M)Y
(901»]“(2 Y'(I - M)Y)| G u{ ) }J
o
= u,{ }Y(I-M) ] (10)
Ly 00y ]

= tr[-S7 1T, ETY(T - M)Y].
Applying (7) and (10) to (6), we get

;—e(xé,z) ——trz 1TU,+—UIL IT,;E" 1}"( - M)Y].

(71;]'
‘Setting the partial derivatives equal to zero leads to finding a positive
definite matrix X that solves

tr[S7IT,) = 2T, Y (T — M)Y/nj (11)
for all ¢ and j.

Let ¥ = 1Y’(I- M)Y/; this is clearly nonnegative definite (positive semi-
definite). If T is positive definite, then ¥ is our solution. Substituting $ for
¥ in (11) gives

tr[S7IT,] = e[RTT ﬁ*ly'(z ~ M)Y/n)
tr{E!
riLT Ty,

Obviously this holds for all ¢ and j. Moreover, under weak conditions ¥ is
positive definite with probability one. (See the discussion following Theo-
rem 1.2.2.)
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UNBIASED ESTIMATION OF X

The MLE ¥ is a biased estimate just as the MLE of the variance in a
standard univariate linear model is biased. (Note that the univariate linear
model is just the special case where ¢ = 1.) The usual unbiased estimate of
¥ does not depend on the assumption of normality and is generalized from
the univariate result. An unbiased estimate of I is
S=Y'(I-M)Y/[ln-r(X)].
To see this, consider the i, j element of Y'(I -~ M)Y.
EY/(I-M)Y;] = E[Y:-XB)(I-M)Y; - XB;)

E{tr{(Y; — X8:)' (I - M)(Y; — X53;))}
E{tr[(I — M)(Y; — XB;)(Y: - XB:)']}

1}

I}

= to{E[(I - M)(Y; - XB)(Yi — XB3;)
tr{(I - ME[(Y; — XB3;)(Yi - X5)'
= tr{(I — M)Cov(Y};,Y;)}
tr{(I — M)oj;I}
= o;(n-r(X)).
Thus, each element of S in an unbiased estimate of the corresponding ele-
ment of .

i

I

EXAMPLE 1.1.1.  Partial Correlation Coefficients
Partial correlations were discussed in Christensen (1987, Section VL.5).
Suppose we have n observations on two dependent variables y;, y2 and p—1

independent variables z;,...,z5-1. Write
I Yyin Y2
Y= 1 | =[NY)
| Yni Yn2
and
) (mn o Tip—1
Z =
LLn1 " xn:v—l
Write a multivariate linear model as
Y=[JZ|B+e

where J is an n x 1 vector of 1’s. As discussed above, the unbiased estimate
of ¥ is S = [s;;] where
S = Y'({I-MY/n-r(X)
1 [YU-my, Y(-MY,
n—-r(X) | Y2(I -MYy Y;(I-M)Y,
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From Christensen (1987, Section VL.5), the sample partial correlation co-
efficient is .
_ Y{(I - M)Y,
VT NI MY: Y - MG
S12

\/311322-

The sample partial correlation coefficient is just the sample correlation co-
efficient as estimated in a multivariate linear model in which the effects of
the z variables have been eliminated.

.2 Testing Hypqtheses

Consider testing the multivariate model
Y=XB+e (1)

against a reduced model :
Y=XoI'+e (2)

where C(Xp) C C(X) and the elements of e are multivariate normal. The
covariance matrix [Z ® I,,] from model (1.1.2) is unknown, so standard
univariate methods of testing do not apply. Let My = Xo(X{Xo)~ X} be
the perpendicular projection operator onto C(Xy). Multivariate tests of
model (2) versus model (1) are based on the hypothesis statistic

H=Y'(M - M)Y

and the e.rror statistic
E=Y'(I - M)Y.

These statistics look identical to the sums of squares used in univariate
linear models. The difference is that.the univariate sums of squares are
scalars, while in multivariate models these statistics are matrices. The ma-
trices have diagonals that consist of sums of squares for the various de-
pendent variables and off-diagonals that are sums of cross-products of the
different dependent variables.

For univariate models, the test statistic is proportional to the scalar
Y'(M — Mp)Y[Y'(I — M)Y]~!. For multivariate models, the test statistic
is often taken as a function of the matrix Y'(M — Mp)Y[Y'(I - M)Y]~? or
some closely related matrix. For multivariate models, there is no one test
statistic that is the universal standard for performing tests. Various test
statistics are discussed in the next subsection.



