~ Data Abstraction
and Program

Design

-

| @

H\

73 8722/

b
3 Data Abstraction

'+ and Program Design

Rod Ellis

Principal Lecturer and Head: Division of Software Engineering
School of Computer Science and Information System Engineering,
Polytechnic of Central London

a i
o

"
o

v
Pitrncyn k8
49

9450016

PITMAN PUBLISHING
128 Long Acre, London WC2E 9AN

A Division of Longman Group UK Limited

©R. Ellis 1991

First published in Great Britain 1991 ?;7,
A "'j)

British Library Cataloguing in Publication Data

Ellis, Rod
Data abstraction and program design.
I. Title
005.1

ISBN 0-273-03257.7

All rights reserved; no part of this publication may be reproduced,
stored in a retrieval system, or transmitted in any form or by any
means, clectronic, mechanical, photocopying, recording and/or
otherwise without the prior written permission of the publishers or
a licence permitting restricted copying in the United Kingdom
issued by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1P 9HE. This book may ot be lent. resold,
hired out or otherwise disposed of by way of trade in any form of
binding or cover other than that in which it is published, without
the prior consent of the publishers.

Reproduced and printed by photolithography
in Great Britain by Biddles Ltd, Guildford

- 0l100ede

Dar LSS

Lol S

talh)

Preface

The term Object-based is used to denote a common conceptual region shared
by modern ‘conventional’ languages, such as MODULA-2 and Ada, and the
Object-Oriented languages Smalltalk, C++, Eiffel etc. This region not only
encompasses specifically linguistic concepts, of which data abstraction pos-
sesses a significance suggested by its prominence in the title of this book,
but also an approach to software design without which these concepts lose
much of their significance. In other words, these languages are not neutral
in respect of the methods of software design with which they are utilised.
Their features can be understood, and exploited: successfully, only in the
light of the design phxlosophy, in its various versions, that informed their
development. - :

This book provides an introduction to object-based techniques of software
construction. Its intended readership falls into'two categories:

1. Software Engineering students in hxgher education who have completed
their initial programming courses, probably in a language such as Pas-
cal. The text introduces them to the concepts of ‘programming in the
large’ and develops these along an Object-based trajectory. As such
the book will form a useful basis for an academic course suitable for
the second year of a software engineering degree programme.

2. Experienced software engineeré who have come across references to-
Object-based techniques in the computer press, or by word of mouth,
and who wish to update their knowledge in this area. The treatment
in relation to this reademhxp should enable the acquisition of a useful
level of competence in some or all of the techniques dealt with, in
conjunction with further reading selected from the Bibliographic Notes.

In writing a book with this objective two possible alternative approaches
suggest themselves. The first, more radical approach, assumes no prior
knowledge on the part of the reader and discusses Object-based concepts
without reference to other, more familiar techniques. The second accepts
that very few readers are likely to approach the subject with a2 mind inno-
cent of programming experience and knowledge, and accordingly attempts
to modify the ‘mind-set’ of its intended readership, by working from the
reasonably familiar to the unknown in a gradual development.

9430016

This latter approach has been adopted for this book, in recognition of its in-
tended readership. Thus the issues are developed through a progression from
a Pascal context, through recognisable developments of Pascal, to the fairly
remote areas of algebraic specification and Object-Oriented programming
languages and techniques. The central, unifying theme of data abstraction
is particularly useful in this context in providing a bridge from conventional
to Object-based techniques.

Part of the motivation underlying its writing was the recognition of the
difficulty that the average student (and the above-average student for that
raatter) has in coming to terms with the concept of ‘programnming in the
sarge’, or ‘architectural’ scfiware design. This difficulty, which is endemic
te the technology, is often exacerbated by the typical programming method-
ology course which, with its emphasis on ‘programming in the small’, or

the detailed implementation of algorithms, provides a set of skills largely

dilferent from that involved in high-level, structural design. This emphasis
incCuces a fascination with imperative detail that is extremely difficult to dis-
" place. Tho function of Chapter 1 is, accordingly, to get the reader to think
in terms of ‘programming ia the large’, or high-level design, to encourage an
appreciation of the importance of defining software components in terms of
their behaviour rather than their implementation, and to view success in this
high-level design activity in termas of its outcome in supporting apparentiy
mundane qualities such as modifiability and maintainability.

Readers who are experienced in software production may well find that
Chapter 1 is preaching to the converted, and prefer to skip to Chapter 2.
This interprets the criteria of good design identified in Chapter 1 in a more
specifically software orientated context, articulated in terms of the vocab-
ulary of modular software design. These ideas are not new, although their
recognition in many works on software design seems fairly scanty.

Chapter 3 considers the support provided for the achievement of good modu-
lar design by conventional programming languages, for whick Pascal is taken
as the model. An examination of the deficiencies that this discussion reveals
leads to an appreciation of the need for a new program structure — the data
. abstraction — the ubiquity of which, to program design, forms a core theire
: »f the book. o
 Chapters 4 and 5 continue the discussion of langnage design issues by intro-
ducing two descendants of Pascal, MODULA-2 and Ada, from the particular
standpoint of their support for the data abstraction. The aim of these Chap-
ters ig to convey the essential features of these languages whilst, particulurly

at0084ée

g

-in ‘the case of Ada, avoiding becoming enmeshed in detailed complexity.

The first five Chapters approach software desxgn from an analytic viewpoint
—- what constitutes good design and how it can be reinforced by linguistic
features. The next two Chapters consider design as a synthetxc issue — how -
design is carried out as an activity so as to achieve the goals defined earlier,
using the tool of the data abstraction.)

Chapter 6 is a case study based on a well-known paper by Parnas, showing
how the criteria introduced in earlier Chapters.can be used to evaluate alter-
native approaches to design; and how information hiding, a quality closely
related to the use of data abstraction, can be ‘designed into’ a system. Chap-
ter 7 develops this idea but from a different 'sta.ndpo‘int — a consideration
of'the application and 1mplementauon domains — leadmg to an exposition
of Object-Oriented Design.”

A subsidiary theme is developed strongly in the second half of the book:
software reuse, and its implications for design. The gualities of integrity and
encapsulation conferred by the data abstraction provide the necessary syn-
tactical support for reusable software composents, hui are not in themselves
sufficient to ensare reusability. The nature of the requirements for reuse are
discussed in Chapter 8 in a mainly Ada context, but leading to ideas going
beyond Ada.

Chapter 8 can be seen as a bridge to two different facets of reuse. The first
arises from the obligation of the writer or supplier of a software component
to define clearly the semantics of its use, It is precisely those qualities of in-
formation hiding, of separation of interface from implementation detail, that
make the communication of the semantics of these interfaces a critical issue
— it is neither desirable nor, often, possible for the user of such a component
to determine its correct usage by inspecting the code that realises its imple-
mentation. In Chapter 9 the necessity for formal, or mathematical, semauntic
specification techuiques is discussed, as a precursor to an introduction to a
particular formal technique -— Algebraic Specification — which has found
favour as the most appropriate for specifying components based on the data
abstraction.

The second of these facets involves the deployment of a new programming
paradigm ~- Object-Oriented Programming — which combines data ab-
straction and reuse in a way that both countrasts with and parallels the
MODULA-2/Ada approach. Chapter 10 presents the major features of the
Object-Oriented paradigin while Chapter 11 contains a comparison of the

characteristics of a representative selection of Object-Oriented programming
languages.

Finally, Chapter 12 reviews the contribution made by the data abstraction
to modern approaches to software design and considers the tendency for
convergence between the two models of exploitation within which the concept
is found — a tendency that suggests a considerable unexploited potential.

Acknowlédgeménts.

The author would like to thank his colleagues for their forbearance during

the gestation of this book, and particularly Mark Priestley for comments on
Chapter 9. Thanks are also due for the helpful suggestions of the reviewers
of the draft, particularly Gordon Blair of the University of Lancaster, and
to John Cushion of Pitman for his patience and convivial encouragement.

BRIV

Contents

Preface
1 The Design of Large Systems 1
1.1 Large Systems and Complexity 1
1.2 Abstraction and Design e 2
1.2.1 Partitioning 3
1.3 Partitioning in Software Systems DI .. 4
1.4 ProgrammingintheLarge. 5
1.5 EvaluatingDesign Ve e e e 6
1.5.1 * In Detailed Design and Implementation 7
1.6 InOperationalLife 8
1.6.1 Reuse e rinnn.. 9
1.7 Good High-level Design, 10
1.8 Summary e e e e e e e e 11
2 Concepts of Modularity A ' 13
2.1 TheNatureof Modules. 13
22 ModuleCoupling vrun... 14
2.2.1 Content Coupling e ... 15
2.2.2 Parametric and Global Coupling' 16
2.2.3 - Interface Commitment e e 18
23 ModuleCohesion v i v v i it e 23
2.4 The Principle and the Benefits 27
25 Summary e e .. 28

Language Structures and Modularity 31

31 Introduction. 31
300 TheStack . o oo v v vt 32

3.2 Pascal Implementations of the Stack 32
3.2.1 Support for Modularity L. 32
3.2.2 A Multiple Subprogram Implementation 33

323 Coupling v .. 33
3.2.4 A Single Subprogram Implementation 36
3.2.5 Pascal's Deficiencies 36
3.2.6 Encapsulation — a Syntactic Wall 39

3.3 The Data Abstraction e e e e e e e 40
3.3.1 Informational Strength 40
3.3.2 Kinds of Operation . . e 41

3.4 SUMMATY % . v v v o e et e e e e e e e e e 48
~ Languages and Data Abstraction - 1 ' 49
41 TIntreduction. e e 49
42 MODULA-2. e e e e e e e e e e e e 50
43 MoQules « v v v v i e e e e e e e e e 50
43.1 Local Modules e 52
4.3.2 Modules and the Data Abstraction 588

44 LibraryModules e 59
4.4.1 Separate Compilation e e e e e 59
4.4.2 FExternal and Internal Views. 61
44.3 Importing Library Modules - 62
444 Name Space Management 63

4.5 Abstract Data T:,;pes e e e e e e e e e e e 65
451 OpaqueTypes e e e 65
4.5.2 Data Abstraction versus Abstract Data Type 67

45.3 Implementing Abstract Data Types 67

46 Reviewof MODULA-2. PR

47 Summary o0 oo 00 e e e 70

N e
N

5

-3

Languages and Data Abstraction - 2 Vi
51 Ado ..o e T 71
5.2 Ada Program UBiS . v v v oo v ve eee e e e 72
5.2.1 ThePackage e e e .73
522 Context Clauses« o v v v vt v v o v v v v 77
523 Private Types . . . « « v v v s v o o v v v v o v oo oo
5.2.4 Limited Private Types v 84
5.3 Reviewof Ada e e e 90
5.4 SUDMMINATY .« « o v o v v v v vt e n s s e s s oo e st s 80
Information Hiding - A Case Study 91
8.1 Introduction. ¢« v i v vt v et e e e 91
6.2 The Problem e e e e e e e 62
6.3 The Algorithm e e e 93
6.4 Design — the Conventional Appreach 93
6.5 Analysis of the Conventional Design 9%
6.6 Improving the Design by Narrowing Interfaces. 97
6.6.1 A Titles Data Abstraction e e 97
6.7 Tarpas’Sclution o e o e 101
6.8 The Circular Shifter Interface 103
6.9 The SorterInterface 104
6.9.1 An iterator-based Interface-06
692 A llybridInterfaceo .. 106
6.10 The Circular Shifter Revisited« . oo oo s . o 107
6.11 Information Hiding oo v o vv I 109
$.12 SUMMATY .+« v« + ¢ vt o v v vt e o n o v ca e e e 110
Object-Oriented Dé:?.ign 111
7.1 Conventional Methodologies v o 112
7.2 Software Design e e e e e e L1183
73 Real World Objects oo 115
7.3.1 Behaviour e e e e 116

7.4
7.5

7.6

7.7
7.8

7.9

Object-Oriented Design
The Methodology
7.5.1 Booch/Abbott
Object Discovery by Prototyping U
7.6.1 Objects as Agents of Behaviour
AFinal View
Inheritance e e e e e e e e e e

7.8.1 Inheritance in MODULA-2and Ada

SWMIMATY + . v v e e e e e e e e

Reusability

8.1

8.2

8.3
8.4

8'5
8.6
8.7

Introductionttt
8.1.1 ComponentSoftware
Criteria for Reusability S
82.1 NegativeCriteria

822 Functionality

823 Independemce
8.2.4 Robustness e
825 FailSafety.
Data Abstraction: the Basis for R,eushbihty_
Genericity e
8.4.1 Problems of Strong Typing e e

8.4.2 GenericsinAda e e e e e e e e

8.4.3 Operation Parameters
8.4.4 Genericity — Summary
Designand Reuse. e e e e e
Extensibility
Summary e e

Formal Specification of ADTs

9.1

Introduction . . v v v v v v v v vt u .. [
9.1.1 The Need for Formal Specification

133
133
134
135
135
135
136
136
136
137
137
138
140
144
146
147
148
152

9.2 A Familiar Exa;mple Ve . 154

9.2.1 Semantic Specification 159

822 Axioms ... e i e e e e e e 161

9.3 An Alternative Semantics e e e e, 163

. '93.1 TermRewriting.o eu'veennen.n 167

94 ALimeEditor ittt 168

9.4.1 Editor Operations0... 170

95 ImplementationBias, 172

9.6 Algebras and Specifications, .. 175

9.7 Algebraic Specification and Iraplementation 182

98 Summaryo 0. e e i e s e e e e .. 184

10 The Object-Oriented Paradigm 185
10.1 Introduction. e e e e e e 185
10.2 Objects and Classes e e e e 186

10.2.1 Instantiation e e 188

10.2.2 Classes and Types e e e e et e e 188

10.2.3 Dynamic Binding of Names to Objects 189

10.2.4 The Message-Passing Metaphor c e e 191

10.2.5 Class Definitions L. 194

10.3 Inheritance e ... PP 195

‘ 10.3.1 Information Sharingand Reuse 196

10.3.2 Information Sharing and Abstraction. 196

10.3.3 The ‘is a’ Relationship e e 199

10.3.4 The Inheritance Mechanism 199

10.3.5 Specialisation and Redefinition 200

10.4 Program Development in an OOP Environment 204

1041 Tools v v vt i e i e e e e e 205

10.5 Summary e e e e e e P 205

’ 11 Object-Oriented Languages 207

11.1 Introduction v v v v v ... e e e e e e e e e 207

11.2 Smalltalko oo
11.2.1 Introduction

© 11.2.2 The Smalltalk System
11.2.3 The Smalltalk Language
11.2.4 The Smalltalk Class Hierarchy
11.25 The MVC Triad R

113 CHF v v v e e e e e e e e e e e e e e
11.3.1 Introduction . . . S
11.3.2 Information Hidingin C
11.3.3 Classes . . . v v o v v v i v v e o s

11.3.4 Object Creation and Destruction

11.3.5 Inheritance
11.3.6 Polymorphism
11.4 Statically and Strongl»y-’l‘yped OOPIs
11.4.1 Static Typ‘iné and Inheritance
1142 Eiffel ST
1143 TRELLIS/OWL
11.5 Multiple Inheritance [
11.6 Summary F

12 Coda — Two Cultures?
Bibliographic Notes

Index

4T 0y¢. ¥

251

Chapter 1

The Design of Large
Systems

1.1 Largé Systems and Complexity

In this book we are concerned with the design of large software systems.
There are many ways of defining what ‘large’ means in this context. To use -
the conventional, if probably the least satisfactory, yardstick, a large software
system comprises something of the order of several huadred thousand to a
million lines of source code. The unsatisfactory nature of this definition arises
from both the vagueness — what exactly is a ‘line of source code’ — and
also the slightly dated nature, of the terminology. Programmers are more
used to thinking in terms of statements after all. It does convey, however, an
impression of the order of magnitude of the physical manifestation of such a
system as a very large body of text.

It may also be objected that the ‘real’ system is the machine-readable and
executable object code version; but the design and implementation of soft-
ware is a human activity, which results finally in a human-readable text —
the source program. The generation of the executable form is, or should
be, an automated process that requires no involvement on the part of the
designer or implementor. So, with all its vagueness, we accept the definition
above with its emphasis on the size, and therefore complexity, of the source
text.

Even a slight experience of programming will have convinced the reader of
the fact that the ease of understanding of a program or program fragment is

1

2 CHAPTER 1. THE DESIGN OF LARGE SYSTEMS

adversely affected, in an all too dramatic way, by its size. Moreover, this ef-
fect is noticeable in numbers of statements counted in tens, rather than tens
of thousands, with an all important threshold occurring, as noted by Brooks
in The Mythical Man-Month, after one page. The difficulty involved in com-
prehending several hundred thousand statements, and correspondingly, in
guiding the gencration of several hundred thousand statements so as to re-
alise & desigu, can easily be imagined therefore. So the question arises, how
can the all too finite human mind span this kind of complexity? 'T'he answer
is not a new one: it is by the use of abstraction — in other words, by the
remnoval of inessential detail, by the removal of the trees obscuring the wood.

The key to ahstraction lies in the ability to see a system as being composed
of a small number of parts or components, each of which can be treated as a
simple unit, the inner details of which need not be censidered when viewing
the whole system.

1.2 Abstraction and Design

The technioue of abstraction is well-established in other, more mature bran-
ches of engineering. An aircraft wing, for example, is a highly complex
structure. When viewed in the context of the predicted performance of the
ajrcraft at the design stage, however, this-complexity can be reduced to a
few ‘quantitative valnes: two corstants that enable the calculation of the
lift and drag of the wing over the range of speeds for which the aircraft
is designed, and its welght and major dimensions, particularly including its
volume (which normally determines the fuel capacity). Provided the designer
of the wing manages, in ‘fleshing out’ its detailed design, to remain within
the framework defined by these few values then the validity of the original
predictions will be preserved. Another way of saying this is that, at the
level of abstraction appropriate to performance calculaticns, the wing can
be considered to be this rather small collection of values. QGuestions as to the
airfoil section of the wing, its construction, control surfaces and so on are
irrelevant in this contert and need not be considered at the initial, high-level
stages of design.

Abstraction is even more siroegly estabiished in electronic engineering with
a theoretical basis that allows for any arbitrarily complex system component
— an amplifier, say — to be replaced, for the purposes of the analysis of
the complete system, by an equivnient circust, An equivalert eircuit consists

1.2. ABSTRACTION AND DESIGN 3

of one eack of the primitive circuit comnponents resistance, capacitance and
inductance, together possibly with a current or potential source. All specific
details of the component in question are abstracted away as far as the resi
of the gystem is concerned. ‘

There are two notions involved in these examples of abstraction::

o the splitting up, or partitioning, of the design into discrete parts or
compenents

e the akility to treat these components individually in tevins of their of-
fects on the rest of the system, whilst igncring their internal structure.
In these examples these effects can be captured by a small set of values.

1.2.1 Pariitioning

- When we consider design in these other areas of engireering the process of
partitioning is a very natural one. Awm aireraft or a car can naturally be seen
as a colleciion of compunents -— integratad in the sense that the components
At and work together 2o as fo enable the machine to achieve its desigrers’
objectives. Moreover, the major components of a car such as the engine,
the body, the transmission and so on, can be treated as single, monolithic
objects at a high level of abstraction, or they may alternatively be viewed
as being themselves composed of components populating a lower level of
abstraction. For example, the engine is composed of the cylinder block,
crankcase, crankshaft, connecting rods and pistons, cylinder head and valve
gear, and so on. By choosing an appropriate level of abstraction we can
reduce the complexity of the nnstractured mass of basic, in the sense of
‘having no compounents’ components, that actually result from dismantling
the car until no further dismantling is possible.

The process of design paturally follows the path from a high level of ab-
straction to lower levels — the car designer initially considers very high level
‘broad-brush’ factors such as the size and major features of the body, the
position of the engine aud g0 on. Ouce these major, high-level features have
Leen determined then the filling cut of the next level of detail may be un-
dertaken, Then this process may be continued to successively lower levels
vntil {literaily) the nuts and bolts level is reached.

Common sense suggests that there is something wrong if the designer com-
maencea the task of designing a car by a detailed analysis of the instrument

4 CHAPTER 1. THE DESIGN OF LARGE SYSTEMS

panel or the radiator grill. Not only does this offend against commonly held
views on ‘getting bogged down in detail’ but also against the idea that over
attention to one part of the design may well lead to an unbalanced final
result. '

Conventional engineering design techniques, then, suggest that success in the
comprehension or design of large or complex systems is very dependent on
the ability to consider these systems as comprised of components at various
levels of abstraction.

1.3 Partitioning in Software Systems

Turning back to the consideration of software systems, with which we are
concerned, it i8 clear that an important distinction between software and
other forms of engineering is that the partitioning of a system into com-
ponents is far less obvious. An aircraft, for example, is very clearly an
assembly of sharply-distinguished components: the wings, tail, fuselage, un- -
dercarriage, engines etc. which have obvious and well-defined functions. The
lack of any of these components is likely to result in an invalid ‘system’ —
one that does not ‘work’. With few exceptions that are only slight devia-
tions from this pattern — and, even then, represent the extreme fringes of
innovation (‘flying wings’ and s6 on) — this set of components forms the
structural model within which the designers of any aircraft exercise their
ingenuity. ~

By contrast, there are very few ‘standard structural models’ to be found
generally in software systems, particularly at a high level of abstraction. It
is true that many batch systems exhibit an input and an output component,
but the rest is both application specific and also dependent on the inspira-
tion of the production team involved. Perhaps more significant is the fact
that in the one example where there is a generally-recognised standard par-
titioning, namely compilers, which are generally comprised of components
that perform lezical analysis, syntaz analysis, semantic analysis and code
generation, there is considerable doubt as to whether this partitioning is a
good one.

The software designer, then, does not work within the framework of a high-
level structure of standard components. In the typical case a software system
might be realised by many different alternative sets of components, any one
of which would ‘work’, and it is the tagk of high-level design to determine

