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Preface

This is an introducory textbook to a vast subject, which although
more than fifty years old is still extremely active and rapidly expanding,
and coming to have an increasingly greater impact on other areas of math-
ematics, as well as having applications to theoretical physics. I have at-
tempted to give a leisurely and accessible exposition of the core material
of the subject, and to cover a number of topics (the theory of C*-tensor
products and K-theory) having a high contemporary profile. There was no
intention to be encyclopedic, and many important topics had to be omitted
in order to keep to a moderete size.

This book is aimed at the beginning graduate student and the special-
ist in another area who wishes to know the basics of this subject. The
reader is assumed to have a good background in real and complex analysis,
point set topolqgy, measure theory, and elementary general functional anal-
ysis. Thus, such results as the Hahn-Banach extension theorem, the uni-
form boundedness principle, the Stone-Weierstrass theorem, and the Riész~
Kakuteni theorem are assumed known. However, the theory of locally
convex spaces is not presupposed, and the relevant material including the
Krein-Milman theorem and the separation theorem are developed in a brief
appendix. The book is arranged so that the appendix is not used until
Chapter 4, and the first three chapters can, if desired, form the basis of
- a short course. The background material for the book is covered by the
following textbooks: [Coh], [Kel], [Rud 1], and {Rud 2].

Each chapter concludes with a list of exercises arranged roughly accord:
ing to the order in which the relevant item appeared in the chapter, and
statements of additional results related to, and extending, the material in
the text.

The symbols N, Z, R, R*, and C refer, respectively, to the sets of non-
" negative integers, integers, real numbers, non-negative real nambers, a.9d
complex numbers. Other notation is explained as needed. !

ix



X Preface

The reader who has finished this book and wants direction for further
study may refer to the Notes section where some books are recommended.

I am indebted to many authors of books on operator theory and oper-
ator algebras. Section 7.5 of this book is based on the approach of J. Cuntz
to K-theory. I should like to thank my colleagues Trevor West and Martin
Mathieu for reading preliminary drafts of some of the earlier chapters.

- Gerard J. Murphy



Contents

Preface

Chapter 1. Elementary Spectral Theory

1.1. Banach Algebras
1.2. The Spectrum and the Spectral Radius
1.3. The Gelfand Representation
1.4. Compact and Fredholm Operators
Exercises !
Addenda

Chapter 2. C*-Algebras and Hilbert Space Operators

2.1. C*-Algebras

2.2. Positive Elements of C*-Algebras
2.3. Operators and Sesquilinear Forms
2.4. Compact Hilbert Space Operators
" 2.5. The Spectral Theorem

Exercises

Addenda

Chapter 3. Ideals and Positive Fuhctionals

3.1. Ideals in C*-Algebras
3.2. Hereditary C*-Subalgebras
3.3. Positive Linear Functionals
3.4. The Gelfand-Naimark Representation
3.5. Toeplitz Operators |
Exercises

Addenda

vii

,
1z

13
18
30
34

35
44
48
53
66
73
75

1
83
87
93
96

107

110



viii Contents
Chapter 4. Von Neumann Algebras L )
4.1. The Double Commutant Theorem ) 112

4.2. The Weak and Ultraweak Topologies 124
4.3. The Kaplansky Density Theorem ’ 129
4.4. Abelian Von Neumann Algebras 133
Exercises 136
Addenda 138
Chapter 5. Representations of C*-Algebras ,
5.1. Irreducible Representations and Pure States 140
5.2. The Transitivity Theorem , 149
5.3. Left Ideals of C*-Algebras 153
5.4. Primitive Ideals : ' 156
5.5. Extensions and Restrictions of Representations 162
5.6. Liminal and Postliminal C*-Algebras 167
Exércises 17
Addenda 172

.Chapter 6. Direct Limits and Tensor Products

6.1. Direct Limits of C*-Algebras ;. 173
6.2. Uniformly Hyperfinite Algebras % = . 178
6.3. Tensor Products of C*-Algebras- 184
6.4. Minimality of the Spatial C*-Noxjrﬁ . 196
6.5. Nuclear C*-Algebras and Short Exdct-Sequences 210
Exercises <> 213
Addenda 216
GChapter 7. K-Theory of C*-Algebras
7.1. Elements of K-Theory 217
7.2. The K-Theory of AF-Algebras o 221
7.3. Three Fundamental Results in K-Theory ' 229
7.4. Stability , 241
7.5. Bott Periodicity 245
Exercises ‘ 262
Addenda 264
Appendix 267
Notes 271
References 7 279
Notation Indez 281

Subject Indez . A 283



CHAPTER 1

Elementary Speétral Theory

In this chapter we cover the basic results of spectral theory. The most
important of these are the non-emptiness of the spectrum, Beurling’s spec-
tral radius formula, and the Gelfand representation theory for commutative
Banach algebras. We also introduce compact and Fredholm operators and

.analyse their elementary theory. Important concepts here are the essential
spectrum and the Fredholm index.

Throughout this book the ground field for all vector spaces and alge-
bras is the complex field C, unless the contrary is explicitly indicated in a
particular context.

1.1. Banach Algebras

We begin by setting up the basic vocabulary needed to discuss Banach
algebras and by giving some examples. e
An algebra is a vector space A together with a bilinear map

A? 5 A, (a,b) s ab,
such that
a(bc) = (ab)e (..b,c€ A).

A subalgebra of A is a vector subsp&c;a B'such that b,b' € B = bb' € B.
Endowed with the multiplication got by restriction, B is itself an algebra.
A norm ||.|| on A is said to be submultiplicative if

llabll < llalllisll (a,b € A).

In this case the pair (4, ||.]|) is called a normed algebra. If A admits a unit 1
(al = la = g, for all a € A) and |1} = 1, we say that A is a unitel normed
algebra.
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If A is a normed algebra, then it is evident from the inequality

llab — a'¥l| < llallllb — o'} 4 SRR~

that the multiplication operation (a, b} &+ ab is jointly continuous.

A complete normed algebra is cplled a Banach algebra. A complete
unital normed algebra is called a unétal Banach algebra.

A subalgebra of a normed algebra is obviously itself a normed alge-
bra with the norm got by resteietion. The closure of a subalgebra is a
subalgebra. A closed subalgebra of a Banach algebra is a Banach algebra.

1.1.1. Ezample. If S is a set, £°°(S), the set of all bounded complex-
valued functions on S, is a unifal Bahath algebra where the operations are
defined pointwise:

(f +g¥z) = f(z) + 9(z) .
(fo)(z) = f(z)9(z)
(AF)(z) = A f(2),

and the norm is the sup-norm

) Wl = suplf(=)l.
v zZ€S

1.1.2. Ezample. If Q is i topological space, the set Cy({2) of all bounded
continuous complex-valued functions on § is a closed subalgebra of £°((2).
Thus, Cy(0) is a unital Banach algebra.

If Q2 is compact, C(§2), the set of continuous functions from Q to C, is
of course equal to Cp(£2).

1.1.3. Ezample. If Q is a locally compact Hausdorff space, we say that a
continuous functionf from § to C vanishes at infinity, if for each positive
number ¢ the set {w € Q| |f(w)| > ¢} is compact. We denote the set of
such functions by Co(§2). It is a closed subalgebra of Cy(Q2), and therefore,
a Banach algebra. It is unital if and only if Q is compact, and in this case
Co(§2) = C(£2). The algebra Cy() is one of the most important examples
of a Banach algebra, and we shall see it used constantly in C*-algebra
theory (the functional calculus).

1.1.4. Ezample. If (Q, ) is a measure space, the set L=(Q, p) of (classes
»f) essentially bounded complex-valued measurable functions on Qisa
inital Banach algebra with the usual (pointwise-defined) operations and
he essential supremum norm f + [ fllco-
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1.1.5. Ezample. If  is a measurable space, let B,(R2) denote the set of
all bounded complex-valued measurable functions on Q. Then By () is a
closed subalgebra of £°(€2), so it is a unital Banach algebra. This example
will be used in connection with the spectral theorem in Chapter 2.

1.1.6. Example. The set A of all continuous functions on the closed
unit disc D in the plane which are analytic on the interior of D is a closed
subalgebra of C(D), so A is a unital Banach algebra, called the disc algebra.
This is the motivating example in the theory of function algebras, where
many aspects of the theory of analytic functions are extended to a Banach
algebraic setting.

All of the above examples are of course abelian—that is, ab = ba for -
all elements a and b—but the following examples are not, in general.

1.1.7. Ezample. If X is a norined vector space, denote by B(X) the set
of all bounded linear maps from X to itself (the operators on X). It is
routine to show that B(X) is a normed algebra with the pointwise-defined
operations for addition and scalar multiplication, multiplication given by
(u,v) = uov, and norm the operator norm:
ol = sup O qup jugay,
: =0 |Izll

fizlt<1

1f X is a Banach space, B(X) is complete and is therefore a Banach
algebra.

1.1.8. Ezample. The algebra. M, (C) of n x n-matrices with entries in C
is identified with B(C™). It is therefore a unital Banach algebra. Recall
that an upper triangular matrix is one af the form

,\,,_/.'.. o An

H A2 ... ... Aon

il

e 0 0 ... 0 Am
Pl

(all entries below the main diagonal are zero). These matrices form a
subalgebra of My(C).

We shall be seeing many more examples of Banach algebras as we
proceed. Most often these will be non-abelian, but in the first three sections
- of this chapter we shall be prmcxpally concerped with the abelian case.

If (Ba)xea iz a family of subalgebras of an algebra A, then Nyga B, is
a subalgebra, also. Hence, for any subset S of A, there isa smallest subal-
gebra B of A containing S (namely, the mtersgptmn of all the subalgebras

¢



4 1. Elementary Spectral Theory

containing S). This algebra is called the subalgebra of A generated by S.
If S is the singleton set {a}, then B is the linear span of all powers a"
(n=1,2,...) of a. If A'is a normed algebra, the closed algebra C generated
by a set S is the smallest closed subalgebra containing S. It is plain that
C = B, where B is the subalgebra generated by S. )

IfA= C(T)', where T is the unit circle, and if z: T — C is the inciusion
function, then the closed algebra generated by z and its conjugate Z is C(T)
itself (immediate from the Stone-Weierstrass theorem). -

A left (respectively, n'ght)’ ideal in an algiebra Aisa véctor subsp'd'ce I
of A such that

a€A and beI=>abe I (respectively, ba € I).

An ideal in A is a vector subspace that is simultaneously a left and a right
ideal in A. Obviously, 0 and A are ideals in A, called the trivial ideals.
A mazimal ideal in A is a proper ideal (that is, it is not A) that is not
contained in any other proper ideal in A. Maximal left ideals are defined
similarly. -

An ideal I is modular if there is an element u in A such that a — au
and a — ua are in I for all a € A. It follows easily from Zorn’s lemma that
every proper modular ideal is contained in a maximal ideal.

If w is an element of a locally compact Hausdorff space 2, and M,, =
{f € Co(R) | f(w) = 0}, then M,, is a modular ideal in the algebra Co().
This is so because there is an element u € Co() such that u(w) = 1, and
hence, f — uf € M,, for all f € Co(2). Since M,, is of codimension one in
Co(R) (as M @ Cu = Co(2)), it is a maximal ideal.

If I is an ideal of A, then A/I is an algebra with the multiplication
given by ' '

(a+I)b+I)=ab+ 1.

If I is modular, then A/I is unital (if a — au,a —ua € I for all a € A, then
u + I is the unit). Conversely, if A/I is unital then I is modular.

If A is unital, then obviously all its ideals are modular, and therefore,
A posesses maximal ideals. ‘ i 7

If (In)rea is a family of ideals of an algebra A, then Nyeall is an
ideal of A. Hence, if S C A, there is a smallest ideal I of A containing
S. We call I the ideal generated by S. If A is a normed algebra, then the
closure of an ideal is an ideal. The closed ideal J generated by a set S is
the smallest closed ideal containing S. It is clear that J is the closure of

the ideal generated by S.
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1.1.1. Theorem. If ] is a closed ideal in a normed algebra A, then A/I
is a normed algebra when endowed with the quotient norm

o+ 11l = jnf lla + bl

Proof. Let € > 0 and suppose that a,b belong to A. Then € + |la + I|| >
lla + a'|| and & + ||b + I]| > ||b+ ¥'|| for some a’,b’' € I. Hence,

(e +lla+ Il)(e + lIb+ 111) > fla + a'llljo+ b| 2 flab + €],

where ¢ = a'b+ ab' + a'd’ € I. Thus, (e + |ja+ I||)(e + ||b+ I|}) = ||ab+ I}|.
Letting ¢ — 0, we get |la+ I||{|jb+ I|| 2 |lab+ I|j; that is, the quotient norm
is submultiplicative. o

A homomorphism from an algebra A to an algebra B is a linear map
@: A — B such that ¢p(ab) = p(a)p(b) for all a,b € A. Its kernel ker(yp) is
an ideal in A and its image p(A) is a subalgebra of B. We say ¢ is unital
if A and B are unital and ¢(1) = 1.

If I is an ideal in A, the quotient map 7: A — A/I is a homomorphism.

If p,1% are continuous homomorphisms from a normed algebra A to
a normed algebra B, then ¢ = ¢ if ¢ and ¢ are equal on a set S that
generates A as a normed algebra (that is, A is the closed algebra generated
by S). This follows from the observation that the set {a € A | p(a) = ¥(a)}
is a closed subalgebra of A.

If A is the disc algebra and A € D, the function
A—-C, f— f(r),

is a continuous homomorphism. Moreover, every non-zero continuous homo-
morphism from A to. C is of this form. This follows from the fact that -
the closed subalgebra generated by the unit and the inclusion function
z:D — C is A. We show this: If f € A and 0 < r < 1, define f, €
C(D) by f(X) = f(r)d). By uniform continuity of f on D, we have
lim, ;- ||f = frllo = 0. Since f, is extendable to an analytic function
on the open disc of center 0 and radius 1/r, it is the uniform limit on D of
its Taylor series. Thus, f, is the uniform limit of polynomial functions on
D, and therefore, so is f.

1.2. The Spectrum and the Spectral Radius

Let C[z] denote the algebra of all polynomials in an indeterminate z
with complex coefficients. If a is an element of a unital algebra’' A and
p € Clz] is the polynomial Co

p=X+Mz +--+ 2",
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we set
- pla) = K+ Aya! 4t A,.a
The map
C[z] — A, pw— pla),

is a unital homomorphism.
We say that @ € A is snvertible if there is an element b in A such that
- ab=ba = 1. In this case b is unique and written a=?. The set

Inv(A) = {a € A} a is invertible}

is a group under multiplication.
We define theé speetrum of an element a to be the set

o(a) = 04(a) = (A€ C| A1 ~ o ¢ Ba(A)}.

We shall henceforth find it convenient to write Al simply as A.

1.2.1. Esample. Let A = C(2), where Qis a compact Hausdorff space.
Then o(f) = f(R) for all f € A.

1.2.2. Ezample. Let A = (°°(S), where S is a non-empty set. Then
o(f) = (f(S))~ (the closure in C) for all f € A.

1.2.3. Ezample. Let A be the algebra of upper triangular n x n-matrices.
If a € A, say

'\ll ’\12 /\ln

0 Azz PR Azn

a= . . . - .
0 ... 0 Ane

it is elementary that

o(a) = {M11,222,. .. Ann}.

Similarly, if A = M,(C) and a € A, then o(a) is the set of eigenvalues
of a.

Thus, one thinks of the spectrum as simultaneously a generalisatiomgof
the range of a function and the set of eigenvalues of a finite square matrix.

1.2.1. Remark. If a,b are elements of a unital algebra A, then 1 —ab is
invertible if and only if 1—ba is invertible. This follows from the observation
that if 1 ~ ab has inverse ¢, then 1 — ba has inverse 1 + bca.

A conseguence of this equivalence is that o(ab) \ {0} = o(ba) \ {0} for
all a,b € A.
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1.2.1. Theorem. Let aibe an element of a unital ailgebra A. If o(a) is
non-empty and p € C|z], then

a(p(a)) = p(a(a))-

Proof. We may suppose that p is not constant. If p € C, there are
elements Ag, ..., A, in C, where Ay # 0, such that

==Xz =) (2= An),

and therefore,
pla) —p=do(a—A)...(a=Ap).

It is clear that p{a) — u is invertible if and only if a — A,...,a ~ ), are.
It follows that u & o(p(a)) if and only if u = p()) for some A € o(a), and
therefore, a(p(a)) .= p(o(a)). 0

The spectral mapping property for polynomials is generalised to con-
tinucus functions in Chapter 2, but only for certain elements in certain
algebras. There is a version of Theorem 1.2.1 for analytic functions and
Banach algebras (sce [Tak, Proposition 2.8], for example). We shall not
need this, howovcr.\\

1.2.2. Theorem. Let A be a unital Banach algebra and a an clement of
A such that |la])| < 1. Then1-—-a€ Inv(A) and

(1-a)” Za

n=0

Proof. Since Yoo, [la™f| < 2"_0 flal® = (1 ~flalh)~! < +oo, the series
3 pa” is convergent, to b say, in %A and since (1 —a)(1+ -+ a™) =
1 - a"*! converges to (1 — a)b= b(l & a)and to 1 as n — oo, the element
b is the inverse of 1 — a. : , - O

The series in Tllegrgixiil‘:2.2 is called the Neumann series for (1 —a)~?.

1.2.3. Theorem. If A is a unital Banach algebra, then Inv(A) is open in
A, and the map
Inv(4d) » 4, ara”?,

is differentiable.

Proof. Suppose that a € Inv(A) and ||b—al| < [[a~1|[~!. Then ((ba~" — 1]
< |16 - afljla™| < 1, so ba~! € Inv(A), and therefore, b € Inv(A). Thus,
Inv(A) is open in A. '
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£ be A and b} <1, then 1 + b € Inv(A) and

J+ B =14 b = [ 31" — 14+ 8 = | (-1

n=0 n=2

< S |elm = Yo/ - ol

n=2

Let a € Inv(A) and suppose that ||c|} < 1{la='||=}. Then |la~!c|| <
1/2 < 1, so (with b = a~!c),

(1407 e)™ 1 +a™ el < lla~ell?/(1 - lla=el)™" < 2fla™"ell?,
"since 1 — la~tc|| > 1/2. Now defirre u to be the linear operator on A given
by u(b) = —a~1ba"!. Then,

e+ —~a ! —u@ =1 +ate) a —a +a 7 ca™|

<t +a7e) = 1+aTefllla™ I < 2(a IPllel®)-
Consequently, :

et ot (@) _
= el

0,

and therefore, the map o:b — b~ is differentiable at b = a with derivative
o'(a) = u. o
The algebra Clz] is a normed algebra where the norm is defined by
setting
llpll = sup |p(A)|-
Al

. Observe that Inv(C[z]) = C\ {0}, so the polynomials pp = 1+2 /n are not
invertible. But limp—copn = 1, which shows that Inv(C[z]) is not open in
Clz]. Thus, the norm on C{z] is not complete.

1.2.4. Lemma. Let A be a unital Banach algebra and let a € A. The
spectrum o(a) of a is a closed subset of the disc in the plane of centre the
origin and radius ||al|, and the map

C\o(a) = 4, A= (a—=XN)"1,
is diff'erentiable.
Proof. If |A| > lla|l, then {|]A7'a]] < 1, 80 1 — A~la is invertible, and
therefore, so is A — a. Hence, A ¢ o(a). Thus, X € o(a) = 1Al € lla}j- The

set o(a) is closed, that is, C \ o(a) is open, because Inv(A) is open in A.
Differentiability of the map A — (a — A)~! follows from Theorem 1.23. O

The following result can be thought of as the fundamental theorem of
Banach algebras. - ’ :
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1.2.5. Theorem (Gelfand). If a is an element of a unital Banach algebra
A, then the spectrum a(a) of a is non-empty.

Proof. Suppose that o(a) = 0 and we shall obtain a contradiction. If
|A] > 2lla]), then |]A~"a}} < 1, and therefore, 1 — | A~ al| > }. Hence,

(1= A7) — 1) = | Sl
. n=1
A" al|
= T-ta] <
Consequently, [|(1 - A~'a)"'|| < 2, and thgerefore,
fila= )" =A@ = A"a) M < 2/1A) < |lafl ™

(a # 0 since o(a) = 0). Moreover, since the map A — (a — ))~' is contin-
uous, it is bounded on the (compact) disc 2|jal|D. Thus, we have shown
that this map is bounded on all of C; that is, there is a positive number M
such that Jj(a— )| < M (A € C).

If r € A*, the function A — 7((a — )~ ') is entire, and bounded by
M|, so by Llouwlle s theorem in complex analysis, it is constant. In
pa.rtxcula.r, (@) = r((a - 1)~ !). Because this is true for all 7 € A*, we
have a~! = (a — 1)7', so a = a — 1, which is a contradiction. o

<2 e <1.

It is easy to see that there are algebras in which not all elements have
. non-empty spectrum For example, if C(z) denotes the field of quotients
. of Clz], then C(z) is an algebra, and the spectrum of z in this algebra is
empty.

1.2.6. Theorem (Gelfand—Mazur). If A is a unital Banach algebra in
which every non-zero element is invertible, then A = C1.
Proof. This is immediate from Theorem 1.2.5. 8]

If a is an element of a unital Banach algebra A, its spectral radius is
defined to be

r(a) = sup |A|
A€o(a)

By Remark 1.2.1, r(ab) = r(ba) for all a,b € A.

1.2.4. Ezample. If A = C(), where Q) is a compact Hausdorff space,
then r(f) = ||fllec (f € 4)-

1.2.5. Ezample. Let A = M>(C) and

-(6 )

Then |la|| = 1, but r(a) = 0, since a® = 0.
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1.2.7. Theorem (Beurling). Ifa is an clement of a unital Banach algebra
A, then

- 3 n l/n . n l/-n
r(a) = inf [|a| Jim {la”|"/".

Proof. If A € o(a), then A™ € o(a™), so |A"| < {la™|], and therefore,
r(a) < infpyy Ha""l/" < liminf, ||a"||'/". ‘
Let A be the open disc in C centered at 0 and of radius 1/7(a) (we
' use the usual convention that 1/0 = +00). If A € A, then 1~ Aa € Inv(A).
If r € A*, then the wmap
fiA=C, A r((1-2a)7").

is analytic, so there are unique complex numbers A, such that

fO) = i AaA" (A€ A).

n=0
However, if | A < 1/||all(< 1/7(8)), then ||Aa]| < 1, so0
(1- p\a)'l = Zz\”a",
n=0

and therefore,

xR
fO) =Y Arr(a™).

n=0
It follows that A, = 7(a") r all n > 0. Hence, the sequénce (r(a™)\") .
converges to 0 for each A € A, atdd therefore a fortiom, it is bounded.
Since this is true for each v € A*, #t Tollows from the principle of uniform
boundedness thet (A\"a®) is a bounded sequence. Hence, there is a positive
number M (depending on ), of comme) such that jA"a™}| < M for all
n > 0, and therefore, fa*'/* < MY/"/|A| (if A # 0). Consequently,
limsup,_., la”||'/® < 1/|)|. We have thusshown that if r(a) < |A7'|, then
limsup,_., la"]'* € |A~!{. K follows thet limsup,_o, la™]|'/" < r(a),
and since r{a) < liminf,_ .. fla®§!/", thevefore r(a) = lim, .o fa ¥, O

1.2.6. Ezample. Let A be the sak of €'-functions on the interva} [0,1].
This is an algebra when endowed with the pointwise-defined operations,
and a submultiplicative norm on A is given by :

U7l = Moo+ Hf e (f € A).

It is elementary that A is complete under this norm, and therefore; A.is™
a Banach algebra. Let 2:[0,1] — C be the inclusion, so # € A._Clearly,
flz"|| = 1 + n for all n, so r(z) = lim(1 + /" =1< 2=z

Recall that if K is a non-empty compact set in C, its complement

C\ K admits exactly one unbounded component, and that the bounded
components of C \ K are called the holes of K.



