'™

ek i
4
#
»

b
'
'

Founmn

S
—_
=
—
-
=
W™
A Lo &{“\\

Java~ Software Solutions

Foundations of Program Design

John Lewis

Villanova University

William Loftus
WPL Laboratories, Inc.

A
v’y ADDISON-WESLEY

An imprint of Addison Wesley Longman, inc.

Reading, Massachusetts ¢« Harlow, England ¢ Menlo Park, California

Berkeley, California * Don Mills, Ontario ® Sydney ¢ Bonn ® Amsterdam
Tokyo * Mexico City

Editor-in-Chief Lynne Doran Cote

Associate Editor Deborah Lafferty
Production Manager Karen Wernholm
Production Editor Amy Willeutt
Marketing Manager ~ Tom Ziolkowski
Compositor Michael and Sigrid Wile
Technical Artist George Nichols
Copyeditor Roberta Lewis
Text Design Ron Kosciak
Indexer Nancy Fulton
Proofreading Phyllis Coyne et al.
Cover Designer Diana Coe

Library of Congress Cataloging-in-Publication Data
Lewis, John, Ph.D.
Java software solutions : foundations of program design / John
Lewis, William Loftus.
p. cm,
Includes index.
ISBN 0-201-57164-1
1. Java (Computer program language) 2. Object-oriented
programming (Computer science} 1. Loftus, William. II. Title.
QA76.73.J381L49 1998

005.13'3--dc21 97-19400
CIP

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book,
and Addison-Wesley was aware of a trademark claim, the designations have been
printed in initial caps or all caps.

Cover image © Jerry Blank/SIS

Access the latest information about Addison-Wesley titles from our World Wide
Web site: http://www.awl.com/cseng
Reprinted with corrections, January 1998.

Copyright © 1998 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a
retrieval system, or transmitted, in any form or by any means, electronic, mechani-
cal, photocopying, recording, or otherwise, without the prior written permission of
the publisher. Printed in the United States of America.

6 7 8 9 10-MA-01009998

Preface

We have designed this text for use in a first course in programming using the Java

language. It serves as an introduction to computer science and forms a foundation

for pursuing advanced computing topics. Our goal is to make students comfortable

with object-oriented concepts so that they will be well-prepared to design and imple-
- ment high-quality object-oriented software.

This text was formed out of our combined experiences with real-world pro-
gramming and classroom teaching of Java. We have written this text from the
ground up, with an object-oriented Java approach always in mind. When Java first
emerged in mid-1995, most of the attention was focused on its applets and glitzy
Web effects. Over time, people have come to realize its larger benefits as a powerful
object-oriented language that is well-designed and pedagogically sound. We have
discovered that students respond better, faster, and more enthusiastically to comput-
ing concepts when they are explained through Java.

In response to a strong initial interest, this text was first published in a prelimi-
nary version. Since then we have made several improvements to the text, rearrang-
ing topics to provide maximum versatility and adding more examples to help
students better grasp important concepts. This edition has also been updated to fully
embrace Java 1.1. This new version of Java provides many improvements over the
earlier version, including a significant improvement to the GUI event model.

Object-Oriented Coverage

We introduce objects early in the text and consistently reinforce their use through-
out. We have found that students find object-oriented concepts highly intuitive if
they are presented in a clear, careful way. Introductory programmers can success-

S—

vi

Preface

fully master concepts like inheritance and polymorphism when these ideas are dis-
cussed in a straightforward and thorough manner.

The term object-oriented software development implies that the approach is ori-
ented around objects, yet some people advocate postponing the introduction of
objects until after many traditional procedural techniques are covered. Our view is
that as soon as a design gets sophisticated enough to deserve multiple methods, it
should use objects with methods in them. Methods should never be taught indepen-
dent of their role in an object. We believe that educating students in object-oriented
design will prepare them to be better programmers regardless of the language used.

GUI Coverage

We have experimented with a variety of approaches and have concluded that our
students should not be asked to develop graphical user interfaces in Java too early.
Introducing GUISs prior to a thorough coverage of classes, interfaces, and inheritance
requires too many vague and misleading side discussions. We still cover applets,
graphics, and animation early, but defer event-based interaction until suitable foun-
dation material has been established.

The Four Cornerstones of the Text

This text is based upon four basic ideas that we believe make for a sound introduc-
tory text.

¢ True object-orientation. A true object-oriented text must do more than
mention objects early. In this text, every situation and example reinforces
the design principles of object-oriented programming. We establish as a fun-
damental guideline that the class that contains the main method should
contain no additional methods; if other functionality is needed, it is pro-
vided through other classes and objects. This guideline is applied in all
programs as soon as objects are introduced. (See the CD_Collection
example in Chapter 4.)

* Sound software engineering. Students should be exposed to software engi-
neering principles early in order to be prepared to develop high-quality
software in the future. Software engineering concepts are integrated
throughout the text and repeatedly reinforced so that students learn their
importance from the start. For example, design and process issues are
introduced in Chapter 3 and revisited in examples throughout the text.
Furthermore, Chapters 11 and 15 are devoted to software engineering
issues.

* Integrated graphics. Modern software systems are graphical. Introductory
programming courses should cover graphics and graphical user interfaces.
Various examples in this text, as early as the No_Parking applet in
Chapter 2, use graphics to motivate and engage students. Furthermore, we

devote Chapter 7 to a complete investigation of basic Java graphics and
Chapter 10 to GUIs and related topics. We introduce GUIs carefully, after
students can appreciate the concepts of event-driven programming.

* Balanced examples. A text must contain a strong balance of smaller and
larger examples. Smaller examples establish a foundation for students,
whereas larger examples provide them with a more realistic context. We
have intertwined small, readily understandable examples with larger, practi-
cal ones to give students and faculty a variety of examples to explore. We
also balance the use of applications and applets throughout the text in order
to give students a strong foundation in both approaches.

Paths Through the Text

This book is designed to be flexible, so that professors can tailor its presentation to
the needs of their students. Professors can take a variety of different paths through
the text; these paths include four major topics—object-oriented development,
graphics and GUIs, software engineering, and Java language features. The initial
chapters should be covered in the designated order, as they form the foundation on
which to explore these topics.

Chapter 1 (Computer Systems) presents a broad overview of computing topics.
It establishes some terminology concerning hardware, networks, and the World-
Wide Web. Depending on the background of the student, this chapter can be cov-
ered quickly or left for outside reading. Chapter 2 (Software Concepts) begins the
exploration of software development and introduces the concepts underlying the
object-oriented approach. Students with previous software development exposure
may only need to focus on portions of Chapter 2 as needed. Chapter 3 (Program
Elements) provides just enough low-level detail, including basic control flow, in
order to make the exploration of objects concrete.

Chapter 4 (Objects and Classes) is the springboard for the rest of the book. It
describes how to define objects using classes and the methods and data that they
contain. At this point the instructor has wide latitude in choosing the topics that will
follow. Chapter 5 (More Programming Constructs) can be covered immediately to
fill in additional low-level details, or it can be deferred to a later point. A more tra-
ditional course flow might also include Chapter 6 (Objects for Organizing Data)
with its emphasis on arrays.

The remaining chapters can be organized in a variety of different ways based
upon the needs of the instructor. Those instructors who want to emphasize object-
oriented development can follow Chapter 4 with Chapter 8 (Inheritance) and
Chapter 9 (Enhanced Class Design). The object-oriented issues should be covered
prior to introducing the graphical user interface material in Chapter 10, although
the basic graphics content of Chapter 7 can be covered any time after Chapter 4. A
software engineering track can be followed by covering Chapters 11 and 15
(Software Development Process I and II) after the object-oriented material. To

Preface vii

vili

Preface

emphasize the Java language features, instructors can follow Chapters 4, 5, and 6
with Chapters 8, 9, and 14 (Advanced Flow of Control). We invite instructors to
experiment with the ordering of chapters to best meet their own course needs.

Pedagogical features

This text contains numerous pedagogical features that help make the material more
accessible to students. Some of the features we use are listed below:

Key Concepts. The Key Concept designation is used throughout the book to
draw special attention to fundamental ideas and important design guide-
lines.

In-Depth Focus boxes. These boxes appear in several places throughout the
text and provide a tiered coverage of material. They allow more advanced
students to challenge their knowledge of the subject without overwhelming
others. Instructors may choose to cover or skip this feature without any loss
of continuity.

Code Callouts. Blue type is used to call out and annotate important parts of
the code. The second color allows students to better understand the code as
they read through it.

Problem sets. Each chapter of the book concludes with a set of problems,
separated into three categories:

- Self-Review Questions and Answers. These short-answer questions
review the fundamental ideas and terms established in the chapter. They
are designed to allow students to assess their own basic grasp of the mate-
rial. The answers to these questions can be found at the end of the prob-
lem sets.

— Exercises. These intermediate problems probe the underlying issues dis-
cussed in the chapter and integrate them with concepts covered in previ-
ous chapters. While they may deal with code, they do not involve any
online activity.

- Programming Projects. These consist of more involved problems that
require design and implementation of Java programs. The projects vary
widely in level of difficulty.

Java reference material. The appendices contain a significant amount of lan-
guage reference material. We have placed this material in appendices so that
more of the text can focus on the important software concepts. Students can
reference these appendices as needed throughout the course to learn more
details of the Java language.

Java style guidelines. Appendix G contains a proposed set of programming
style guidelines. These guidelines are followed in the examples throughout
the text.

e Graphical design notation. The object-oriented designs in the text are pre-
sented with a simple graphical notation. This allows students to read and
use a design notation similar to professional development models.

Conventions

We use various conventions for indicating different types of material in the text.
Important words and phrases are emphasized in italics on their first use. Code is
presented in a monospaced font:

void cube (int num) {
System.out.println (“The cube is
} // method cube

“ 4+ (num*num*num)) ;

and code elements, such as cube, maintain the code font in the text. Output is pre-
sented in a monospaced font surrounded by a colored box:

The cube is 9

Specific syntax of individual programming statements are shown in shaded
boxes:

In the sample run of a program, user input is shown in color:

> java Average

Enter a number (-1 to quit): 90

Enter a number (-1 to quit): 80

Enter a number (-1 to quit): 70

Enter a number (-1 to quit): -1
8

The average is 80

Preface

ix

X

Preface

Pseudocode is presented in a script font:

prompt for and read the grade
while (grade does ot equal -1) {
increment count
sum = sum + grade;
prompt for another grade
read next grade

}

average = sum / count;

print average

Supplements

This book comes with a large variety of supplemental materials to assist in course
preparation and execution. Links to all of the supplements can be found on the
book’s official Web site at http://www.awl.com/cseng/author/lewis/
java. In addition to the supplements listed below, this site contains all examples
from the book and additional Java examples not found in the book.

® Instructor’s Manual. A manual has been created to assist professors in
course preparation. It contains strategy suggestions for presenting material,
answers to text exercises, solutions to selected programming projects, and a
collection of potential test questions and answers. To obtain a copy of the
Instructor’s Manual, please contact your local Addison-Wesley sales repre-
sentative.

* Laboratory Manual. A series of independent exercises support curricula
that use a closed lab approach. Instructors can choose from a variety of
labs, covering material found in each chapter of the text. The labs overlap
to reflect the various ways that an instructor can approach the book. In
addition to use in the laboratory environment, the lab exercises may also
be assigned as outside work.

* Integrated Web Presentation. These Web pages allow an instructor to inter-
actively present course notes, examples, and executable code entirely
through a Web browser. At the instructor’s discretion, the material can then
be made available to students for further review at their own pace.

® Transparency Masters. Overhead slides are available for those who choose
not to use the Integrated Web Presentation. Slides may be obtained in
either Microsoft PowerPoint format or PostScript.

Acknowledgments

The creation of this text was an effort that extends well beyond the authors. If we
have succeeded in our goals, it is largely due to the support we received from many
sources.

First of all, we greatly appreciate the students who have participated in the
courses in which preliminary versions of this text were used. Their feedback and
suggestions have been quite helpful in the process of refining the book’s content and
presentation.

Lynne Doran Cote and Debbie Lafferty at Addison-Wesley have been outstand-
ing in their editorial support and encouragement. Amy Willcutt was amazingly help-
tul and accommodating during the final production of the text, with the support of
Karen Wernholm. Tom Ziokowski, Michael Hirsch, and Stacy Treco provided
important insight and direction. Roberta (Bobbie) Lewis, of Lewis Editorial
Services, was a pleasant and meticulous copyeditor. We appreciate their support of
our vision for this book and their desire for quality above all else.

Many thanks go to our reviewers, listed below, who provided important, con-
structive comments and suggestions. They found numerous ways to improve the
quality of the text and were never shy about expressing their opinion. Any errors
that still exist in the book are solely the responsibility of the authors, as we can
never seem to stop making changes.

Christopher Haynes Indiana University

Lawrence Osborne Lamar University

B. Ravikumar University of Rhode Island

David Riley University of Wisconsin, LaCrosse
Vijay Srinivasan JavaSoft, Sun Microsystems Inc.
Shengru Tu University of New Orleans

John J. Wegis JavaSoft, Sun Microsystems Inc.
David Wittenberg Brandeis University

Thanks also go to the many informal reviewers who have provided valuable
feedback. Chief among them is Dan Joyce of Villanova University, who was instru-
mental in helping us revise our initial approach and who provided guidance through
multiple revisions. Paul Gormley also provided significant and helpful comments on
the content of the text.

Special thanks go to Pete DePasquale at Villanova University. He has been a
tremendous help in many areas, including the development of Appendix O, the cre-
ation of exercises, and overall review. His assistance has been invaluable.

Many other people have helped in various ways. They include Ken Arnold, Bob
Beck, Alan Dellinger, Tom DiSessa, Dan Hardt, John Loftus, Bob Pollack, Tim
Ryan, Brent Schwartz, Ken Slonneger, Joe Tursi, and Mahesh Vanavada. Our apolo-
gies to anyone we may have forgotten.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is a
tremendous resource. Their conferences provide an opportunity for educators from
all levels and all types of schools to share ideas and materials. If you are an educator
in any area of computing and are not involved with SIGCSE, you’re missing out.

The faculty in the Department of Computing Sciences at Villanova University
and the staff at WPL Laboratories, Inc. have supported us both throughout this
process. Their support is greatly appreciated.

Preface xi

4

xii

Preface

Thanks also go to the following: Sun Microsystems (the network #s the com-
puter), FedEx (it often had to be there overnight), WaWa (open 24 hours, including
holidays), Dominos (they deliver), Diet Coke (just for the taste of it), New Orleans
(especially the House of Blues), sleep (we’ve read about this), coffee (the elixir of
life), Altoids (curiously strong), a helpful student (for the goat), and the couch of sci-
ence (the seat of inspiration).

Most importantly, thanks go to our wives. John thanks his wife Sharon for her
love and understanding throughout this project, and for distracting him when he
needed it. Bill thanks his wife Veena, for her undying love and support, his son
Isaac, for his inspirational story “The Golden Mask,” and his daughter Devi, for
teaching him how to dress.

John Lewis
William Loftus

Lontents

Preface v

Chapter 1 Computer Systems 1

1.1 Introduction 2
Basic Computer Processing 2
Software Categories 3
Digital Computers 6
Binary Numbers 9
1.2 Hardware Components 11
Computer Architecture 11
Input/Output Devices 13
Main and Secondary Memory 14
The Central Processing Unit 17
1.3 Networks 19
Network Connections 20
Local-Area and Wide-Area Networks 21
The Internet 22
The World-Wide Web 24
Uniform Resource Locator 26
Summary of Key Concepts 27
Self-Review Questions 29
Exercises 29
Answers to Self-Review Questions 30

xiii

xiv

Contents

Chapter 2

Chapter 3

Software Concepts 33

2.1

2.2

2.3
24

2.5

2.6

A Java Program 34
White Space 36
Comments 37
Identifiers, Reserved Words, and Literals 39
The print and println Methods 41

Programming Languages 44
Programming Language Levels 44
Compilers and Interpreters 46
Syntax and Semantics 48
Errors 49

Compiling and Executing a Java Program 51

Object-Oriented Programming 54
Software Engineering 54
Software Components 56
Objects and Classes 58

Class Libraries 61
The Java API 61
The import Statement 63

Java Applets 64
Applet Examples 65
HTML 68

Summary of Key Concepts 69

Self-Review Questions 71

Exercises 71

Programming Projects 72

Answers to Self-Review Questions 73

Program Elements 75

31

3.2

3.3

3.4

Primitive Data Types 76
Integers and Floating Points 76
Characters 77
Booleans 78
Wrappers 78

Variables and Assignment 79
Variables 79
The Assignment Statement 80
Constants 82

Input and Output 83
Streams 83
Escape Sequences 85
Input and Output Buffers 85
Numeric Input 87

Arithmetic Operators 89

Chapter 4

3.5

3.6

3.7

3.8

Operator Precedence 90
Making Decisions 92
The if Statement 92
Boolean Expressions 94
Block Statement 95
The if-else Statement 97
Nested if Statements 101
Repetition 102
The while Statement 102
Infinite Loops 106
Developing Programs 106
Requirements 107
Design 107
Implementation 108
Testing 108
Example: Test Average 109
Summary of Key Concepts 115
Self-Review Questions 116
Exercises 117
Programming Projects 118
Answers to Self-Review Questions 119

Objects and Classes 121

4.1

4.2

43
4.4

4.5
4.6

4.7
4.8

4.9

Objects 122
Classes 123
Instantiation and References 124
Using Predefined Classes 125
The string Class 125
The StringTokenizer Class 128
The Random Class 130
Aliases 131
Defining Methods 134
The return Statement 135
Parameters 136
Defining Classes 140
Encapsulation 143
Abstraction 145
Visibility Modifiers 146
Example: CD Collection 148
The static Modifier 150
Static Variables 150
Static Methods 151
Method Overloading 152
Overloading Constructors 153

Contents

Xv

4.10 Example: Purchase Power 155
4.11 Example: sStorm Applet 160
Requirements 160
Design 161
Implementation 163
System Test 166
Summary of Key Concepts 167
Self-Review Questions 167
Exercises 168
Programming Projects 169
Answers to Self-Review Questions 170

Chapter 5 More Programming Constructs 171

5.1 Internal Data Representation 172
Representing Integers 172
Representing Floating Point Values 175
Representing Characters 176
Conversion Categories 177
Performing Conversions 179

5.2 More Operators 181
Increment and Decrement Operators 181
Logical Operators 183
Assignment Operators 186
The Conditional Operator 188
Precedence Revisited 189

5.3 More Selection Statements 189
The switch Statement 189

5.4 More Repetition Statements 194
do Statement 194
for Statement 196
Using the break Statement in Loops 199
The continue Statement 199
Labels 201

Summary of Key Concepts 202
Self-Review Questions 202

Exercises 203

Programming Projects 20§

Answers to Self-Review Questions 206

Chapter 6 Objects for Organizing Data 207

6.1 Arrays 208
Basic Arrays 208
Alternate Array Syntax 215

xvi Contents

Initializer Lists 216
Example: Monthly Sales
Arrays of Objects 220
Arrays as Parameters 225
Multidimensional Arrays
The Vector Class 232
Dynamic Arrays 233
Strings Revisited 237

217

228
6.2

6.3

Using StringTokenizer 237
242

The stringBuffer Class
Summary of Key Concepts
Self-Review Questions 244
Exercises 245
Programming Projects 246
Answers to Self-Review Questions

243

Chapter 7 Graphics 251

7.1 The Graphics Class 252
The Graphics Coordinate System
Color 255
Predefined Colors
Defining Colors
XOR Mode 258
Drawing Shapes 260
Ovals 260
Rectangles
Arcs 268
Polygons
Polylines
Fonts 27§
Example: Bouncing Ball
Summary of Key Concepts
Self-Review Questions 281
Exercises 282
Programming Projects 282
Answers to Self-Review Questions

7.2
255
257

7.3
263

271
273
7.4
7.5 277

281

Chapter 8 285

Creating Subclasses 286
Derived Classes 286
The protected Modifier
The super Reference 290
Defined versus Inherited 292

Inheritance
8.1

289

248

252

283

Contents

xvii

xviii

Contents

Chapter 9

Chapter 10

Student Example 294
8.2 Overriding Methods 296
Employee Example 298
Savings Accounts Example 302
8.3 Class Hierarchies 305
Revising and Extending Hierarchies 307
Alternative Hierarchies 312
The object Class 313
8.4 Polymorphism 315
References and Class Hierarchies 315
Paying Employees Example 319
Summary of Key Concepts 326
Self-Review Questions 327
Exercises 327
Programming Projects 327
Answers to Self-Review Questions 328

Enhanced Class Design 331

9.1 Abstract Classes and Methods 332
Example: Food 332
Example: File Structure 334
Deriving Subclasses 337
9.2 Interfaces 338
Methods in an Interface 339
Constants in an Interface 340
Using Interfaces 341
Encapsulation and Information Hiding 346
9.3 Packages 347
Defining Packages 348
Using Packages 350
Summary of Key Concepts 352
Self-Review Questions 353
Exercises 353
Programming Projects 354
Answers to Self-Review Questions 354

Graphical User Interfaces 357

10.1 GUI Elements 358

10.2 Event-Driven Programming 359
Event Interfaces 364

10.3 Components and Containers 368
Containers 369

