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Preface

We have designed this text for use in a first course in programming using the Java

language. It serves as an introduction to computer science and forms a foundation

for pursuing advanced computing topics. Our goal is to make students comfortable

with object-oriented concepts so that they will be well-prepared to design and imple-
- ment high-quality object-oriented software.

This text was formed out of our combined experiences with real-world pro-
gramming and classroom teaching of Java. We have written this text from the
ground up, with an object-oriented Java approach always in mind. When Java first
emerged in mid-1995, most of the attention was focused on its applets and glitzy
Web effects. Over time, people have come to realize its larger benefits as a powerful
object-oriented language that is well-designed and pedagogically sound. We have
discovered that students respond better, faster, and more enthusiastically to comput-
ing concepts when they are explained through Java.

In response to a strong initial interest, this text was first published in a prelimi-
nary version. Since then we have made several improvements to the text, rearrang-
ing topics to provide maximum versatility and adding more examples to help
students better grasp important concepts. This edition has also been updated to fully
embrace Java 1.1. This new version of Java provides many improvements over the
earlier version, including a significant improvement to the GUI event model.

Object-Oriented Coverage

We introduce objects early in the text and consistently reinforce their use through-
out. We have found that students find object-oriented concepts highly intuitive if
they are presented in a clear, careful way. Introductory programmers can success-
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fully master concepts like inheritance and polymorphism when these ideas are dis-
cussed in a straightforward and thorough manner.

The term object-oriented software development implies that the approach is ori-
ented around objects, yet some people advocate postponing the introduction of
objects until after many traditional procedural techniques are covered. Our view is
that as soon as a design gets sophisticated enough to deserve multiple methods, it
should use objects with methods in them. Methods should never be taught indepen-
dent of their role in an object. We believe that educating students in object-oriented
design will prepare them to be better programmers regardless of the language used.

GUI Coverage

We have experimented with a variety of approaches and have concluded that our
students should not be asked to develop graphical user interfaces in Java too early.
Introducing GUISs prior to a thorough coverage of classes, interfaces, and inheritance
requires too many vague and misleading side discussions. We still cover applets,
graphics, and animation early, but defer event-based interaction until suitable foun-
dation material has been established.

The Four Cornerstones of the Text

This text is based upon four basic ideas that we believe make for a sound introduc-
tory text.

¢ True object-orientation. A true object-oriented text must do more than
mention objects early. In this text, every situation and example reinforces
the design principles of object-oriented programming. We establish as a fun-
damental guideline that the class that contains the main method should
contain no additional methods; if other functionality is needed, it is pro-
vided through other classes and objects. This guideline is applied in all
programs as soon as objects are introduced. (See the CD_Collection
example in Chapter 4.)

* Sound software engineering. Students should be exposed to software engi-
neering principles early in order to be prepared to develop high-quality
software in the future. Software engineering concepts are integrated
throughout the text and repeatedly reinforced so that students learn their
importance from the start. For example, design and process issues are
introduced in Chapter 3 and revisited in examples throughout the text.
Furthermore, Chapters 11 and 15 are devoted to software engineering
issues.

* Integrated graphics. Modern software systems are graphical. Introductory
programming courses should cover graphics and graphical user interfaces.
Various examples in this text, as early as the No_Parking applet in
Chapter 2, use graphics to motivate and engage students. Furthermore, we



devote Chapter 7 to a complete investigation of basic Java graphics and
Chapter 10 to GUIs and related topics. We introduce GUIs carefully, after
students can appreciate the concepts of event-driven programming.

* Balanced examples. A text must contain a strong balance of smaller and
larger examples. Smaller examples establish a foundation for students,
whereas larger examples provide them with a more realistic context. We
have intertwined small, readily understandable examples with larger, practi-
cal ones to give students and faculty a variety of examples to explore. We
also balance the use of applications and applets throughout the text in order
to give students a strong foundation in both approaches.

Paths Through the Text

This book is designed to be flexible, so that professors can tailor its presentation to
the needs of their students. Professors can take a variety of different paths through
the text; these paths include four major topics—object-oriented development,
graphics and GUIs, software engineering, and Java language features. The initial
chapters should be covered in the designated order, as they form the foundation on
which to explore these topics.

Chapter 1 (Computer Systems) presents a broad overview of computing topics.
It establishes some terminology concerning hardware, networks, and the World-
Wide Web. Depending on the background of the student, this chapter can be cov-
ered quickly or left for outside reading. Chapter 2 (Software Concepts) begins the
exploration of software development and introduces the concepts underlying the
object-oriented approach. Students with previous software development exposure
may only need to focus on portions of Chapter 2 as needed. Chapter 3 (Program
Elements) provides just enough low-level detail, including basic control flow, in
order to make the exploration of objects concrete.

Chapter 4 (Objects and Classes) is the springboard for the rest of the book. It
describes how to define objects using classes and the methods and data that they
contain. At this point the instructor has wide latitude in choosing the topics that will
follow. Chapter 5 (More Programming Constructs) can be covered immediately to
fill in additional low-level details, or it can be deferred to a later point. A more tra-
ditional course flow might also include Chapter 6 (Objects for Organizing Data)
with its emphasis on arrays.

The remaining chapters can be organized in a variety of different ways based
upon the needs of the instructor. Those instructors who want to emphasize object-
oriented development can follow Chapter 4 with Chapter 8 (Inheritance) and
Chapter 9 (Enhanced Class Design). The object-oriented issues should be covered
prior to introducing the graphical user interface material in Chapter 10, although
the basic graphics content of Chapter 7 can be covered any time after Chapter 4. A
software engineering track can be followed by covering Chapters 11 and 15
(Software Development Process I and II) after the object-oriented material. To
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emphasize the Java language features, instructors can follow Chapters 4, 5, and 6
with Chapters 8, 9, and 14 (Advanced Flow of Control). We invite instructors to
experiment with the ordering of chapters to best meet their own course needs.

Pedagogical features

This text contains numerous pedagogical features that help make the material more
accessible to students. Some of the features we use are listed below:

Key Concepts. The Key Concept designation is used throughout the book to
draw special attention to fundamental ideas and important design guide-
lines.

In-Depth Focus boxes. These boxes appear in several places throughout the
text and provide a tiered coverage of material. They allow more advanced
students to challenge their knowledge of the subject without overwhelming
others. Instructors may choose to cover or skip this feature without any loss
of continuity.

Code Callouts. Blue type is used to call out and annotate important parts of
the code. The second color allows students to better understand the code as
they read through it.

Problem sets. Each chapter of the book concludes with a set of problems,
separated into three categories:

- Self-Review Questions and Answers. These short-answer questions
review the fundamental ideas and terms established in the chapter. They
are designed to allow students to assess their own basic grasp of the mate-
rial. The answers to these questions can be found at the end of the prob-
lem sets.

— Exercises. These intermediate problems probe the underlying issues dis-
cussed in the chapter and integrate them with concepts covered in previ-
ous chapters. While they may deal with code, they do not involve any
online activity.

- Programming Projects. These consist of more involved problems that
require design and implementation of Java programs. The projects vary
widely in level of difficulty.

Java reference material. The appendices contain a significant amount of lan-
guage reference material. We have placed this material in appendices so that
more of the text can focus on the important software concepts. Students can
reference these appendices as needed throughout the course to learn more
details of the Java language.

Java style guidelines. Appendix G contains a proposed set of programming
style guidelines. These guidelines are followed in the examples throughout
the text.



e Graphical design notation. The object-oriented designs in the text are pre-
sented with a simple graphical notation. This allows students to read and
use a design notation similar to professional development models.

Conventions

We use various conventions for indicating different types of material in the text.
Important words and phrases are emphasized in italics on their first use. Code is
presented in a monospaced font:

void cube (int num) {
System.out.println (“The cube is
} // method cube

“ 4+ (num*num*num) ) ;

and code elements, such as cube, maintain the code font in the text. Output is pre-
sented in a monospaced font surrounded by a colored box:

The cube is 9

Specific syntax of individual programming statements are shown in shaded
boxes:

In the sample run of a program, user input is shown in color:

> java Average

Enter a number (-1 to quit): 90

Enter a number (-1 to quit): 80

Enter a number (-1 to quit): 70

Enter a number (-1 to quit): -1
8

The average is 80

Preface
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Pseudocode is presented in a script font:

prompt for and read the grade
while (grade does ot equal -1) {
increment count
sum = sum + grade;
prompt for another grade
read next grade

}

average = sum / count;

print average

Supplements

This book comes with a large variety of supplemental materials to assist in course
preparation and execution. Links to all of the supplements can be found on the
book’s official Web site at http://www.awl.com/cseng/author/lewis/
java. In addition to the supplements listed below, this site contains all examples
from the book and additional Java examples not found in the book.

® Instructor’s Manual. A manual has been created to assist professors in
course preparation. It contains strategy suggestions for presenting material,
answers to text exercises, solutions to selected programming projects, and a
collection of potential test questions and answers. To obtain a copy of the
Instructor’s Manual, please contact your local Addison-Wesley sales repre-
sentative.

* Laboratory Manual. A series of independent exercises support curricula
that use a closed lab approach. Instructors can choose from a variety of
labs, covering material found in each chapter of the text. The labs overlap
to reflect the various ways that an instructor can approach the book. In
addition to use in the laboratory environment, the lab exercises may also
be assigned as outside work.

* Integrated Web Presentation. These Web pages allow an instructor to inter-
actively present course notes, examples, and executable code entirely
through a Web browser. At the instructor’s discretion, the material can then
be made available to students for further review at their own pace.

® Transparency Masters. Overhead slides are available for those who choose
not to use the Integrated Web Presentation. Slides may be obtained in
either Microsoft PowerPoint format or PostScript.
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