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Prgface

This book contains the papers presented at a conference with the same
title which was held at St. Catherine’s College, Oxford from 5th to 8th April,
1970. This was organised by the Institute of Mathematics and its Applica-
tions, following an initial suggestion of W. G. Sherman and H. H. Robertson.
The detailed organisation was performed by a committee under the Chairman-
ship of E. T. Goodwin. The aim of the conference was to bring together
original workers in this developing subject and also practitioners in the
many different fields in which it is applied. It was hoped that the papers
would be biased away from systems arising from the solution of partial differ-
ential equations and towards systems from other applications and having
a less well-ordered structure in order to counterbalance the bias of most
of the published literature.

The papers are included in the order that they were presented at Oxford
with the exception of that of E. C. Ogbuobiri, who unfortunately was unable
to attend. E. M. L. Beale, R. Allwood and R. Baumann were invited to give
introductory talks summarizing the way sparse systems of equations arise in
their respective fields; J. Walsh, F. Harary and R. P. Tewarson were invited
to speak on three particular aspects of the sparse matrix problem; the re-’
maining papers were selected from those submitted.

About ten minutes were allowed for discussion following each talk. Anyone
who contributed to this discussion was invited to hand in a written version
for publication and I am very grateful to those who did this. Most of the
comments that appear in print, however, are shortened versions constructed
by me from notes I took at the time. Typescripts were made available on the
day following each talk so that the contributors could correct the comments
I had attributed to them. I omitted only those parts of the discussion which I
felt brought out no points of interest and I took considerable “poetic licence™
in reordering and rewording the contributions.

One of the difficulties in the past has been that expertise has been developed
for particular applications and has been left buried in computer programs.
I think that this conference has gone some way towards correcting this. We
heard about current practice in the fields of linear programming, structural
analysis, surveying, power system analysis and network flow. We also heard
from several numerical analysts working on the sparse matrix problem with-

vii



viii PREFACE

out having any particular field in mind. Workers in each of these categories
gained by learning of the practice of others, and it is to be hoped that readers
of this book will find it similarly useful and will not restrict their attention
to those chapters which obviously discuss their own particular interest.

The really large problem places particular demands on both the hardware
and software of a computer. Readers who are interested in this aspect should
pay particular attention to the paper of Willoughby. It is also considered by
Allwood and some interesting comments appear in the discussion following
de Buchet’s talk. :

I should like to thank the secretarial staff of the Institute of Mathematics
and its Applications for their work during the evenings of the conference in
typing drafts of the discussions, and Mrs. M. Johnson for her help with the
numerous typing jobs that were necessary during the preparation of the book.

J. K. REID
A.E.R.E., Harwell
January 1971
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Sparseness in Linear Programming

) 2
E. M. L. BEALE
(Scientific Control Systems Ltd.)

Summary

This expository paper reviews some aspects of linear programming from the point
-of view of manipulating sparse matrices. Some typical linear programming formu-
lations are described in algebraic terms, to indicate how and why large sparse
matrices arise in practical problems. The standard simplex method used for solving
linear programming problems is then outlined, both in its original form and using
the product form of the inverse matrix method. The last section of the paper indi-
cates the main ideas used to find an accurate.and compact product form represen-
tation of the inyerse of an arbitrary sparse matrix. In particular it shows how the
ideas of triangular decomposition can improve this process. :

1. Introduction

Linear programming is widely used for economic planning in industry, parti-
cularly the process industries. It is also being used increasingly in other
contexts, such as agriculture and defence, to throw light on the best allocation
of scarce resources.

Thispaper consists of an exposition of some aspects of linear programming
from the point of view of manipulating sparse matrices. Section 2 indicates
how these matrices arise in typical practical problems. The mechanics of the
standard method of solving linear programming problems, Dantzig’s Simplex
Method, are described in section 3. This section also introduces the Product
Form of the Inverse Matrix Method, which enables sparseness to be exploited
much more fully than when using the original simplex method. Section'4 is
devoted to methods of finding an accurate and compact product form repre-
sentation of the inverse of an arbitrary sparse matrix. This topic i§'~qf great
importance in linear programming ,and also in other contexts. It will ke dis-
cussed more fully by De Buchet [2]. .

In order to avoid attempting to cover too wide a field within a single paper
extensions of linear programming are not discussed here in any detail. But it
is perhaps worth pointing out that one reason for the intense research and
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2 E. M. L. BEALE

development activity in methods for exploiting the sparseness of linear pro-
gramming matrices over the past year or two has been the growing realisation
that many large integer programming problems can be solved effectively by
branch and bound methods, but that the solution of one integer programming
problem in this way requires the solution of a (possibly long) sequence of
linear programming problems. Actually these particular linear programming
problems are best solved by a variant of the simplex method known as para-
metric programming, but the same sparse matrix techniques are used.

2. Linear Programming Formulations

The basic problem of linear programming is to choose nonnegative values of
variables x; (j =1, ... n) to minimize some linear objective function Z;c; x;
subject to m linear equality constraints

iayx;=b,  (i=1,...m).

Note that this formulation allows inequality constraints, since we can turn
the inequality ‘
2 j ai J X J S bi

into an equation by adding the nonnegative slack variable s; and writing
Zla“x_, + §; = bi'

We can also maximize the objective function by changing signs. In practice
the problem is usually input to the computer as if it were written

xo + ziaojxj = bo

.1

-ZJa”x]=bi (i=1, ...m)

where the objective is to maximize the dummy variable x,. Positive coeffi-
cients a,; then represent costs and negative a,; represent revenues.

In general terms, the variables x; represent levels of activities, for example
the rate of production for some product, and the constraints represent re-
sources; for example b; might be the total amount of available labour and a;

amount of labour required per unit of activity x;. But in order to under-
stand how and why real linear programming problems produce large sparse
matrices we must look at formulations in more detail. It is also appropriate
to use somewhat different notation, since one common feature of most linear
programming models is that a natural description requires many different
subscripts for both the variables and constants. It is therefore convenient to
start by defining the subscripts, then the constants and variables, and finally
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the constraints and objective function. It is obviously very important to dis-
tinguish clearly between variables whose optimum values are to be determined
by the model and constants whose values are assumed. A useful trick is there-
fore to use capital letters for constants and small letters for variables.

A typical production planning model may involve three subscripts

i for materials
j for resources (machine capacities etc.)
and k for production activities.
The constants may then be
Ay the amount of material i produced per unit level of activity k, where
A, is negative if the material is an input used in the activity.
By the amount of resource Jj required per unit level of activity k
C, the operating cost per unit level of activity k
Py, the cost of material i, if bought from outside
Pg, the revenue obtained per unit of material i sold
0, the stock of materiaki available for purchase
the available amount of resource j

S.iSy; the lower and upper limits on the amount of material i that can be
sold. :

The variables may then be

b, the amount of material i bought (déﬁned only for those i for which
Py, is defined) ' ’

s; the amount of material i sold (defined only for thosé i for which
Py, is defined)

x; the level of production activity k.
The problem is then to maximize

Z;Psis; — Z; Py by — L, Cy %
subject to the material balance constraints
Ly Auxy + b; — 5, =0forall i,

the capacity constraints
%, Bjy x; < R for all j,

the availability constraints

b; < Q;foralliwhere0 < Q; < ©
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and demand constraints of the form
SLi < S; < SUi for all i,
together with the usual nonnegativity constraints

x;, = O0for all &,
and
b, > Oforall i

A model of this kind is often relatively small. It may contain up to about 100
constraints and about 2 or 3 times as many variables, including slack vari-
ables. It may not be very sparse, particularly if it is small; but on the other
hand the variables b; and s; have few nonzero coefficients and many of the
Ay and B may also vanish.

The model becomes both larger and sparser if one studies serveral different
plants in the same model. This may be appropriate if one is concerned with
deciding which products to make where, to produce the best balance between
production and distribution costs, or which is the best way to allocate raw
materials available in limited quantities between plants. The model may then
have two additional subscripts A

I for location of plants
and m for markets.
We may then need to consider extra constants

Cru,,» the cost of transporting one unit of material i from location I to
location /,, and there will be corresponding variables.

Yuy,, the amount of material i transported from location /; to location /,.
The problem is then to maximize

2%, %, Psim Sgm — Ly Xy Ppyby — T X, Cyxy — I I, %, Crug, Y
subject to the material balance constraints
Ly Ay X + by — ZoySum + Ty, Yy — Zy, Yin, = 0, forall i and J,

the capacity constraints

X, Bjy xu < Rj,, for all jand /,

the availability constraints

by < Qforalli
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and demand constraints of the form
Siim < Xy Sym < Syim for alliand m
together with the usual nonnegativity constraints
X020,b;20, 54n=>0, yy,, >0

Such a model may contain a few hundred constraints and a larger number of
variables, but the average number of nonzero coefficients per column (i.e. per
variable) may still be not more than about 6.

The model becomes even larger, but often more valuable, when time is con-
sidered explicitly. In an industry where seasonal factors are important one
must compromise between minimizing storage costs, by making the produc-
tion pattern follow the forecast demand as closely as possible, and minimizing
production costs, by producing at an even rate throughout the year or possibly
by producing most when raw materials are cheapest.

" The formulation of multi-time period models involves an extra subscript ¢
for the time period, which is added to the variables and constraints, thus
increasing the size of the problem very considerably. One also adds storage
activities, which are essentially the same as the transport activities y;,;, except
‘that storage transports material from one time period to the next instead of
from one location to another in the same time period.

Other multi-time period models arise in long-term studies of capital invest-
ments. The time periods are then usually years.

A multi-time period model may contain well over 1000 constraints. Some
contain over 2000 constraints, but the density of these large problems is al-
most always well under 19,

3. The Simplex Method

In principle, the simplex  method involves taking the equations (2.1) and
solving for x, and m of the other variables, which we call basic variables and
denote X, ... X,,. The resulting equations can then be written in the form

xo = 500 + z‘iaoj("' XJ)

(3.1)

Xi= 5,0 +E]au(— x_,), i=1,2,...m

where the summation on the right-hand side extends only over the nonbasic
variables, i.e. those that do not occur on the left-hand side. Corresponding to
this formulation we have a trial solution to the problem, obtained by setting
all the nonbasic variables equal to zero, so that x, = @,, and the basic
variables X take the values G,y. The array of coefficients in (3.1) is known as
a tableau. .
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If all 4, are non-negative then the trial solution is feasible, since no vari-
able takes an impossible value. If all the @,; are also nonnegative, then x,
cannot be made larger than d,, without making some nonbasic variable x;
negative, so the trial solution is optimal.

If the trial solution is feasible but not optimal, then we may find some nega-
tive coefficient @,,. This indicates that x, can be increased by increasing the
variable x,. If x, can be increased indefinitely without driving any of the basic
variables X, negative, i.e. if all the coefficients a;, < 0, then the problem has
an unbounded solution. But otherwise we must stop increasing x, when some
basic variable, say X, drops to zero. The formula for finding X, is

() = min (32)

Gy, a,

where the minimum is taken over those i for which a,, > 0. Having found
such a variable, we can use the equation for X, to solve for x, in terms of the
other variables, and can then substitute for x, throughout (3.1). We will then
have a new tableau of the form (3.1) but with an improved trial solution. The
whole process can then be repeated until an optimal solution is found.

The operation of solving for x, and substituting for it in terms of the other
variables is known as a pivoting operation. We say that we are pivoting in the

“variable x, instead of X . .

If the trial solution ‘is not feasible, then one can find a new variable x, to
be pivoted in to reduce the extent of the infeasibility, i.e. the sum of the
magnitudes of the values of all variables that are negative. The details can be
found in textbooks on linear programming, such as Beale [1].

This in outline is the original simplex method. In practice, the logic of the
simplex method is carried out without computing the full tableau (3.1), since
one can take better advantage of the sparseness of the original set of equa-
tions (2.1). We may write (2.1) as a matrix equation

Ax=b. 3.2)

We then define B as the square submatrix of A formed by taking the columns
of coefficients of the basic variables xo, X, ... X,,. If we now premultiply
both sides of (3.2) by B!, we obtain the equation '

B 1Ax =8, (33
where B=B"1b. 34

Now (3.3) in éffect expresses the basic variables x,, X4, ... X,, as linear func-
tions of the nonbasic variables. It must therefore be equivalent to (3.1) and
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we see that the components of § are the (a;o) of (3.1), while the remaining
coefficients in the tableau (3.1) are the elements of the product B~ LA

The simplex method does not require the computation of the entire matrix
B! A. We need to be able to pick out the top row, the coefficients a,;, but
these can be found by forming the inner products of the top row of B~ ! with
the columns of A. And having selected a column a, of A representing the
coefficients of x,, the variable to be pivoted in, we need to form the (@) as
the components of B~ a,.

Since the original matrix A is generally much sparser than B A, itis
advantageous to work with some representation of B! and the original mat-
rix A rather than with the tableau. This requires that

(a) we have a compact representation of B™*, and

(b) we can update B™! from one iteration to the next without doing a
complete matrix inversion. '

Let us first consider point (b). After each iteration the new matrix B differs
from the previous matrix only in a single column. We therefore consider the
effect of this on the inverse. To see that the inverses must be simply related,
consider the algebraic equations )

Xy =by y1 + b2y + e + by Ym + Bimi1 Yme1

Xy =by ¥ +b32Y2+ .. + bomVm + O2mi 1 Ym+1 (3 5)

Xm = bmlyl + bm2y2 + ...+ bmmym + bmm+1ym+l'

To form the inverse of the ﬁaatrix

biy..-bim
B=|: s
bml e bmm
we can perform m pivot steps on the system (3.5) in turn, in each case solving
for y,; in terms of x; and the remaining variables and then substituting for y;

in the other equations. We will then have transformed (3.5) into a system of
the form

yi=byxi+baxs 4 o 4 b X + By it Y
Ya=byy X%y + b2 xs+ oo + Do X+ by it Vet (3.6)

Ym = Bml X4 + Em2 X2 + ...+ Bmmxm + 5m,m+1ym+1'
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B~1is then glven by 1 B

ml *°° BM

The matrix

as can be seen by putting y,,,, = 0 in (3.5) and (3.6), since (3.5) is then the
matrix equation
x = By
and (3.6) becomes
y =B x.

But now suppose we want to replace some column, say the second, of B by
the coefficients of y, ., in (3.5). Then we must €Xpress Yy, Vm+ 1> ¥3s -+ Vm il
terms of x, ... x, with y, = 0. But, given (3.6), this can be achieved very
simply by solving the second equation for y,.; in terms of y,, X, X3, ... X,
and then substituting for y,, throughout (3.6).

. Now m practice one might not have the coefficients (b;m+1) explicitly
available. But we see that these are defined by

B-l bm+ ) §4

Bl 1- Blm
where B! denotes the current inverse” :
b',,,, oo By

and b,,, ; denotes the column of coefficients of y,,., in (3.5). So the whole
process of revising the inverse consists of one matrix times vector multiplica-
tion to find the b, ,,,, followed by a single pivoting operation. In the linear
programming application, the matrix times vector multiplication must be
done anyway, to determine the coefficients (@,,) before selecting the variable
X, so we only need consider the pivoting operation.

Now each pivoting operation can be represented as premultiplying B™! by
an elementary transformation matrix T which is a unit matrix except that its
pth column (if the columns are numbered 0, 1, ... m) is replaced by —a,,/a,,
in its off-diagonal elements and 1/a,, in its diagonal element.

This leads us to consider the product form representation of the inverse of
a sparse matrix, due to Dantzig and Orchard-Hays [4]. This implies that we
start with a unit matrix and write down a sequence of elementary transfor-
mation matrices representing the effects on B~ of replacing each column of
the original unit matrix by a column of the actual required B in turn. So B™!
is then written in the form

B '=TT,_,..T,T,T, 3.7
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where r may equal m, or it may be smaller if there are some unit vectors in
the final matrix B. At first sight, this may seem to be a very expanded way in
which to express B~!, but this is not so. Each elementary transformation
matrix can be defined in the computer by one index defining the non-unit
column and one row-index with an associated numerical value defining the
nonzero elements in this column. The other columns play such a shadowy
existence that these matrices are often referred to as vectors, specifically n-
vectors.

To form any row, or any linear combination of rows, of B! we define a
row-vector ¢ giving the weights to be attached to the rows, and form the
product

¢T, T, .. T, T, T,

starting from the left. We therefore have a sequence of r vector by matrix

multiplications, but because of the nature of the T matrices each multiplica-

tion never alters more than one element in the row vector. This process is

known as a Backward Transformation because the elementary transforma-

tions are used in the opposite order to that in which they were generated.
To form any column of the current tableau B~ 'A we form the product

T,T,,..TsT,T,a

starting from the right. We therefore have a sequence of r simple matrix by
vector multiplications. This process is known as a Forward Transformation
because the elementary transformations are used in the same order as that
in which they were generated. ’

After each pivot operation, the representation of B~ ! is updated by adding
another elementary transformation to the end of the list. This is a relatively
quick and painless operation, but it makes subsequent backward and forward
transformation a little slower and possibly less accurate. So after a while one
stops iterating and throws away the list of elementary transformations, re-
taining only the sequence numbers (or names) of the variables whose columns
form the current basis B. We then form a new list of elementary transforma-
tions, representing the effects of replacing the columns of an initial unit
matrix by the columns of the current B in some order. Techniques for choos-
ing the sequence of pivot operations during this inversion process are vital
to a good linear programming code, and have been developed extensively
during the last few years. Some of the main features are described in the next
section, and in other papers presented at this conference.

Incidentally, the need to invert from time to time to speed up the solution
process provides a good opportunity to control the build-up of rounding error
in the current values of the basic variables, defined by the vector B in (3.3)
and (3.4). At each interation the new B is found by premultiplying the previous



