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Foreword

According to its definition, Synergetics is concerned with systems that produce
macroscopic spatial, temporal, or functional structures. Autowaves are-a specific,
yet very important, case of spatio-temporal structures. The term "autowave" was
coined in the Soviet Union in analogy to the term "auto-oscillator". This is a -
perhaps too literal - translation of the Russian word "avto-ostsillyatory" (= self-
oscillator) which in its proper translation means "self-sustained oscillator®.
These are oscillators, e.g., clocks, whose internal energy dissipation is compensa-
ted by a (more or less) continuous power input. Similarly, the term "autowaves" de-
notes propagation effects - including waves - in active media, which provide spa-
tially distributed energy sources and thus may compensate dissipation. An example
which is now famous is represented by spiral or concentric waves in a chemically
active medium, undergoing the Belousov-Zhabotinsky reaction.

This book provides the reader with numerous further examples from physics, chem-
istry, and biology - e.g., autowaves of the heart. While the Belousov-Zhabotinsky
reaction is now widely known, a number of very important results obtained in the
Soviet Union are perhaps less well known. I am particularly glad that this book may
help to make readers outside the Soviet Union acquainted with these important exper-
imental and theoretical findings which are presented in a way which elucidates the
common principles underlying this kind of propagation effects. Professor V. Krinsky
has taken great care in editing this book to which prominent scientists from the
Soviet Union and from abroad contribute and I wish to congratulate him for his suc-
cessful efforts.

Hermann Haken




Preface

During recent years remarkably universal mechanisms have been found for the develop-
ment of order from random distributions in active systems of quite different
natures. These mechanisms are linked to the propagation of strongly nonlinear
waves, the so-called autowaves which are spatio-temporal analogs of auto-oscilla-
tions. While the auto-oscillation theory is a well-developed branch of science, the
study of autowaves is still only in an embryonic state.

Among interesting examples of self-organization discovered in the study of the
propagation of autowaves in active media is the occurrence of dissipative wave
structures in quite different fields: the morphogenesis of the simplest multicellu-
lar organisms, the optic cortex, the retina, heart tissue, the Belousov-Zhabotinsky
chemical reaction. The autowave processes are also important in phase transitions,
in particular for the disappearance of superconductivity, for movements of the do-
main walls in magnetic or magnetoelectric media, and for phenomena of critical
boiling. Different types of chaos in active media, including cardiac arrhythmias,
proved to be connected with the initiation and reproduction of autowave vortices.
In 1983, a symposium devoted to these problems took place at the Scientific Centre
of Biological Research of the USSR Academy of Sciences in Pushchino. This volume
contains short reviews by invited authors, written after the symposium, with ac-
count taken of results presented there.

The camera-ready volume was prepared at the Biological Research Centre of the
USSR Academie of Sciences, Institute of Biological Physics, Phushchino, USSR.

Pushchino V.Il. Krinsky

August 1984
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Synergetics - Some Basic Concepts and Recent Results

H. Haken

Institut fur Theoretische Physik, Universitdt Stuttgart, Pfaffenwaldring 57/1V
D-7000 Stuttgart 80, Fed. Rep. of Germany

1. INTRODUCTION

In my contribution I should like to give a brief outline of some
basic ideas of synergetics [1], [2] . Then I shall present some of
our recent results obtained by an application of our mathematical
methods. The word SYNERGETICS 1is composed of two greek words and
means COOPERATION. What we study in this field is the cooperation
of individual parts of a system so that a self-organized formation
of spatial, temporal, or functional structures on macroscopic
scales becomes possible. In particular we shall ask whether there
are general principles which govern self-organization irrespective
of the nature of the individual subsystems which may be electrons,
molecules, photons, biological cells, or animals. Or, to use an
idea expressed by Danilov and Kadomtsev [3], synergetics can be
considered as a search for universal mathematical models (of self-
organization). In particular, we wish to develop an opera-
tional approach in the sense of general systems theory. Such kind of
approach has been persued in the Soviet Union by Lyapunov, Mandel-
stam, Andronov, Vitt, Chaikin, and many others.

2. OUTLINE OF THE GENERAL APPROACH

Let me take an example from physfcs. We may describe the behavior
of a fluid at three different Tevels. At the microscopic level we
deal with the motion of dindividual atoms or molecules. At the
mesoscopic level we lump many molecules together into droplets so
that we may speak of densities, temperature etc., but so that at
this level no macroscopic structure is visible. At the macroscopic
Tevel we deal with the formation of structures e.g. rolls, hexagons
etc. While e.g. in laser physics we directly proceed from the
microscopic to the macroscopic level [4], in this lecture we shall
adopt the following attitude. We assume that the transition from
the microscopic to the mesoscopic level has been achieved by
statistical mechanics or that adequate equations have been formula-
ted at the mesoscopic level in a more or Tless phenomenological
manner. An example is provided by the Navier Stokes equations, or
by rate equations for chemical reactions. We then wish to study the
evolution of patterns at the macroscopic level.

The state of the system is described by a set of variables q, ...q
which we 1lump together into a state vector gq. Because in eneral
the processes depend on space and time, q is a function of x and t
also. The following 1ist gives a number of dinterpretations of the
various components of q

!“‘



numbers or densities fluids, solidification

of atoms or molecules chemical reactions
velocity fields ftames, lasers, plasmas
electromagnetic fields electronic devices
electrons solid state

firing rates of neurons neural nets

numbers of specific cells morphogenesis

monetary flows etc. economy

numbers of animals ecology

The processes may take place in various geometries e.g.in the
plane, 1in threedimensional space, but also on a sphere. For
instance pattern formation on spherical shells in biology have been
studied by Velarde [5] or pattern formation in the atmosphere of
planets by Busse and others. Also one may think of more complicated
manifolds or even evolving manifolds. The concept of approach of
synergetics rests on a number of paradigms, to use a word en vogue,

namely

a) evolution equations

b) instability

c) slaving

d) order parameters

e) formation of structures
f) instability hierarchies

3. A BRIEF OUTLINE OF THE MATHEMATICAL APPROACH

a) Evolution equations

These equations deal with the temporal evolution of q, i.e. we have
to study @ = N(q). The r.h.s. is a nonlinear function of the
components q,, e.g. q7, q.q, etc. The systems under consideration
are dissipatﬂve i.e. tﬁey éoztain equations of the form

ﬁl == Y9t ... (3.1)
They may contain transport terms describing

convection: vvv, v:velocity

diffusion: A (3.2)

waves: A

The systems are controlled from the outside, e.g. by changing the
energy input. This control is described by control parameters, e.g.

by « in the eq.
q="(a+ylg+ ... (3.3)

Finally, <close to transition points of nonequilibrium phase
transitions fluctuations play a decisive role. These fluctuations
stem from fluctuating forces which represent the action of the
microscopic "underwor1ld" on the physical quantities q of the
mesoscopic level. Lumping all the different terms together, we are
led to consider coupled nonlinear stochastic partial differential
equations of the type

dq(x,t) = N(q,v,x,a,t)dt + dF (3.4)

where we may use the Stratonovich calculus. Without fluctuations




the equations reduce to

q=N(q,9,%x,a,t) (3.5)
A special case treated in chemistry has the form
q = R(q) + Dv2q (3.6)

where the first term R describes the reactions whereas the second
describes diffusion processes. For sake of completeness we mention
that as long as we deal with Markov processes we may also invoke
other types of equations, e.g. the Chapman-Kolmogorov equation.
Finally we mention that the methods we shall present below,
including the slaving principle, possess a quantum mechanical
analogue, where the evolution equations are replaced by Heisen-
berg”s operator equations which contain damping terms and fluctua-
ting operator forces.

b. Instability

We assume that we have found a solution of the nonlinear equations
for given control parameters a=a_. In practical cases such a
solution may describe, for 1nstanc8, a quiescent and homogeneous
state, but our treatment may also include spatially inhomogeneous
and oscillatory states. We denote the corresponding solution by g .
When we change the control parameter that solution q_ may loose its
stability. To study the stability (or instability) we put

q{x,t,a) = qo(x,t,u) + wix,t,a) (3.7)

and insert it into (3.5). Assuming that w is a small quantity we
may linearize (3.5) and study the resulting equations of the form

w o= L(qo(X,t),V,x,a)w, w = wit) (3.8)

If L is 1independent of t or depends on t periodically, or in a
large class of systems in a quasiperiodic fashion, the solutions

can be written in the form
W3y - exp(Ajt)v(j)(t) (3.9)

where v(t) is bounded. Thus the global behavior of w is determined
by the exponential function in (3.9). We call those solutions,
whose real part of A fis positive, unstable, and those whose real
part of A 1{s negative, stable. In order to solve the nonlinear
equation (3.5) (or, moré generally, its stochastic counterpart
(3.4)) we make the hypothesis

alx,t) = q (x.t,00t)) + J (v e e 0000

J
(3.10)*

+ 3 s (v e te e
k
where & 1is a set of certain phase angles in case we deal with
quasiperiodic motion. For details 1 refer the reader to my book

ADVANCED SYNERGETICS. Here it may suffice to note that by inserting

* 7 and k run over the unstable and stable mode
indices, respectively.




the hypothesis (3.10) into our original nonlinear equations (3.5)
we find after some mathematical manipulations the following
equations

Uy = aguy+ ”§U)<u,¢,t,s), (3.11)
S,0% At N'((S)(u,¢,t,s), (3.12)
b= W ue,e,50, (3.13)

Similarly, starting from (3.4) we obtain stochastic equations for
u,s, ¢. Though in general one may not expect to simplify a problem
by means of a trans-formation, the new equations (3.11)-(3.13) can
be considerably simplified when a system is close to instability
points, where the real parts of some 1"s change their sign from
negative to positive.

¢) The slaving principle

For the situations Jjust mentioned we have derived the slaving
principle for stochastic differential equations and discrete noisy
maps. The slaving principle states that we may express the ampli-
tudes s of the damped modes by means of u and ¢ at the same time,
so that

s = flu,o,t) (3.14)

We shall call u and & order parameters. We have studied numerous
cases of dissipative systems and have found that in practically all
of them there occur only few order parameters while there are still
very many slaved modes. As a consequence we achieve an enormous
reduction of the degrees of freedom because we may express all
damped modes s by the order parameters. In this way we obtain a
closed set of equations of the form

N(u,o,t), (3.15)
N (u,e,t). (3.16)

Some applications of these equations will be discussed below in
section 5.

U
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4., GENERALIZED GINZBURG=-LANDAU EQUATIONS

When the dimensions of continuously extended systems are Tlarge
compared to the fundamental 1length of developing patterns, the
spectrum 2 1is practically continuous. In such a case particular
mathematical difficulties arise because it is no more possible to
distinguish clearly between undamped and damped modes. A way out of
this difficulty can be found when we resort to the formation of
wave packets. This in turn necessitates that the order parameters,
which we shall call &, depend not only on time but now also on
space (in a slowly varying fashion). Therefore our hypothesis reads

alx,t) = q_+ ] &, {x,t)v, {x) + ] slaved modes (4.1)
o k kc k

c c




where k  runs over a discrete set of critical wave vectors at which
the instabilities occur. For simplicity let us again consider a
case in which no phase angles occur and let wus furtheron be
satisfied with an expansion of the nonlinear terms up to third
order. The order parameter equations then acquire the form

£, (x,t) = x (v)g, (x,t) + ) A... &, £
kc kc kc kl’k2 k1 kz
(4.2)
+ ) B... &, & &+ F .
k, k, k k
kl,kz,k3 172 73 c

I have called these equations, which I derived some time ago
"Generalized Ginzburg-Landau-equations", because they are strongly
reminescent of the famous Ginzburg-Landau=equations. But two
important distinctions should be noted. While the original Ginzburg-
Landau-equations refer to a system in thermal equilibrium my
Generalized Ginzburg-Landau-equations refer to systems far from
thermal equilibrium. Furthermore the original Ginzburg-Landau-
equations were derived in a heuristic fashion, whereas here the
Generalized Ginzburg-Landau-equations have been derived rigorously.
Because of the double and triple sums these equations are quite
clumsy. However, under well justified assumptions these equations
can be simplified as I have shown recently. To this end 1 define a

new function
yix,t) = J e’kcxgk (x,t). (4.3)
k c
c

After a few elementary manipulations and under specific assumptions
on A, A and B eq.(4.2) can be cast into the form

F(x,t) = (a+ b(k2 - v2)2)¥ + ay2 + By3 + F, (4.4)

where 1 have chosen an explicit example for a(k)}) which refers to
the eigenvalues of the convection instability. We have solved this
equation on a computer to study the temporal evolution of pat-
terns. A typical result 1is shown in Fig. 1.

5. SOME FURTHER APPLICATIONS

By means of the mathematical methods we have outlined above my
coworkers and I have treated a number of explicit cases over the
recent years. I present a few of them 1in order to demonstrate the
applicability of the mathematical method I have briefly sketched in
the beginning of my lectures.

a) Pattern formation of an MHD plasma

WhTch 3¢ heated from below and is subjected to a vertical constant
magnetic field. The boundary conditions 1in the horizontal direc-
tions are chosen periodic. Several patterns could be found. In the
single mode case rolls appear, well known from fluid dynamics.
However, also two or three mode cases are possible. A typical

velocity distribution is shown in Fig. 2.

b) Running waves in the positive column of a gas

discharge in neon
By means of a nonlinear treatment it has been possible to derive
the corresponding spatio-temporal pattern in good qualitative and
semiqualitative agreement with experiments.




(c) (- 179 L--540

AFig.1. A roll pattern is prescribed but the para-
meter values of the equation are chosen such that
hexagons should be formed. The sequence a - h
shows the formation of hexagons but the final
state is reached only at infinitely large time
(critical slowing down)

Fig.2. Lines of constant vertical velocity in a
plasma heated from below and subject to vertical
constant magnetic field

Fig.3. Embossed map on model
calculation on fructification
of sunflower

c) Prepattern formation of the spiral wave pattern of

a sunflower head
We Thave adopted reaction diffusion equations of the form (cf.3.6)
and have used the Gierer-Meinhardt-model for the reaction terms.
Since the specific form of the reaction terms is not so important
we don"t discuss them here. However, it was assumed that the




diffusion is space dependent. Results of the nonlinear analysis are
shown in Fig.3. They cTearly exhibit two counter rotating sets
of spirals in good agreement with the observed fructification of
the sunflower head.

6. OUTLOOK

By means of the systematic approach of synergetics it has been
possible to classify a number of spatial and temporal patterns
which occur over and over again. In addition it has become possible
to study the dynamics close to transition points in detajl because
the dynamics is governed by few order parameters only. A few words
of future problems may be in order and I will 1ist only three of
them:

1) So far we have assumed that we start from a spatfally homo-
geneous state. The whole approach works also if the original state
is spatially inhomogeneous but time independent or time periodic.
However, in order to solve the linearized equations and to derive
the order parameter equations in most cases computer calculations

may be needed.

2) When we go away from instability points, the patterns remain
qualitatively the same as s known from numerous experiments.
However, as it seems to me a rigorous theory far away from instab-

11ity points is still lacking.

3) A rich field of further study is provided by chaos and it seems
to me that we are just at the beginning of classifying and under-
standing chaotic motion.

In conclusion it might be worth pointing out that in the field of
synergetics we need not only a further development of mathematical
methods but also the corresponding experiments must be performed
and a close interaction between experimentalists and theoreticians
is needed. We believe that the approaches so far have not only
given us fundamental insights into the way new patterns evolve at
instability points but have also led to a number of practical
applications by exploiting analogies between different systems.
These analogies become apparent through the order parameter
equations. I am sure that this will lead to a development of new
devices, especially in solid state physics and quantum electronics.

References:

1. H. Haken, "Synergetics. An Introduction. Nonequilibrium
Phase Transitions and Self-Organization in Physics,
Chemistry and Biology". Third Revised and Enlarged Edition,
Springer Verlag, Berlin, Heidelberg, New York, Tokyo 1983

2. H. Haken, "Advanced Synergetics. Instability Hierarchies
of Self-Organizing Systems and Devices", Springer Verlag,
Berlin, Heidelberg, New York, Tokyo 1983

3. Yu. A. Danilov, B.B. Kadomtsev, in "Nonlinear Waves,
Self-Organization" edited by A.V. Gaponov=Grechov,

M.1. Rabinovich, Moscow 1983

4. H. Haken “"Laser Theory" Encyclopedia of Physics Yol.XXv/2c,
Springer Verlag Berlin, Heidelberg, New York 1970,
reprinted 1983

5. J.L. Ibanez, M.G. Velarde, J.Non-Equilib.Thermodyn.

Yol.3. 63 (1978)
Ch. Berding and H. Haken, J. Math.Biolog.14, 133 (1982)




