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Reinforced concrete is a widely used material for constructed systems. Hence graduates of every
civil engineering program must have, as a minimum requirement, a basic understanding of the
fundamentals of reinforced concrete. Additionally design of the members of a total structure is
achieved only by trial and adjustment: assuming a section then analyzing it. Consequently design
and analysis were combined to make it simpler for the student tirst introduced to the subject of
reinforced concrete design.

The text is an outgrowth of the author’s lecture notes evolved in teaching the subject at Rutgers
University over the past twenty-five years and the experience accumulated over the years in teaching
and research in the areas of reinforced and prestressed concrete up to the Ph.D. level. The material
is presented in such a manner that the student can be familiarized with the properties of plain concrete
and its components prior to embarking on the study of structural behavior The book is uniquely
different from other textbooks at this level in that most of its contents can be covered in one semestel
in spite of the in-depth discussions of some of its major topics.

The concise discussion presented in Chapters 1 through 4 on the historical development of
concrete, the proportioning of the constituent materials, the long-term basic behavior, and the
development of safety factors should give an adequate introduction to the subject of reinforced
concrete. It should also aid in developing fundamental laboratory experiments and essential know-
ledge of mix proportioning, strength and behavioral requirements, and the concepts of reliability of
performance of structures to which every engineering student should be exposed. The discussion of
quality control and quality assurance should also give the reader a good introduction to the systematic
approach needed to administer the development of concrete structural systems from conception to
turnkey use.

Since corcrete is a nonelastic material, with the nonlinearity of its behavior starting at a very early
stage of lvading, only the uitimate strength approach, or what is sometimes termed the “limit state
at failure approach,” is given in this book. Adequate coverage is given of the serviceability checks
in terms of cracking and deflection behavior as well as long-term effects. In this manner, the design
should satisfy all the service-load-level requirements while ensuring that the theory used in the
analysis (design) truly describes the actual behavior of the designed components.

Chapters S, 6, 7, and 8 cover the flexural, diagonal tension, and serviceability behavior of
one-dimensional members: beams and one-way slabs. Full emphasis has been placed on giving the
student and the engineer a feeling for the internal strain distribution in structural reinforced concrete
elements and a basic understanding of the reserve strength and the safety factors inherent in the
design expressions. Chapter 9, on the analysis and design of columns and other compression
members, treats the subject of strain compatibility and strain distribution in a similar manner as in
Chapter 5, on flexural analysis and design of beams. It includes a detailed discussion of how to
construct interaction diagrams for columns as well as proportioning columns subjected to biaxial
bending and buckling. With Chapter 10, on bond and development length in reinforcement, and
Chapter 12, on the design of foundations and footings, the sequence of design steps of all elements
except two-way floors is complete.
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It is important to mention that Chapter 6. on diagonal tension, also contains detailed coverage of
the behavior of deep beams, corbels. and brackets, with sufficient design examples to supplement
the theory. This topic has been included in view of the increased use of precasi construction, the
wider understanding of the effects of induced horizontal loads on floors, and the frequent need for
including shear walls and deep beams in today’s muli:icvel structures. Additionally, Chapter 7 treats
the topic of torsion in some detail considering the space constraints of the book. The discussion
ranges ‘rom the basic fundamentais of pure torsion in elastic and plastic materials to the design of
reinforced concrete members subjected to combined torsion, shear, and bending. The material
presented and the accompanying illustrative examples should give the background necessary for
pursuing more advanced studies in this arca, as listed in the selected references.

Chapter 11 presents an extensive coverage of the subject of analysis and design of slab and plate
floor svstems. Following a discussion of fundamental behavior, it gives detailed design examples
using both the ACI procedures and yield-line theory for the flexural design of reinforced concrete
Hoors. It also includes uttimate load solutions to most fleor shapes and possible gravity luading
patter <. Detailed discussion of the deflection behavior and 2valuation of two-way pancis as well as
the cracking mechanism of such panels. with approgriate analysis examples. makes this chapter
another unique feature of this concise textbook.

1t is important to emphasize that ir this field, the use of computers prevails ey Access to
transportable personal computers and handheld computers, due to their affordablc cost, has made
it pussible for almost every student to be equipped with such a tool. Hence Chapter 13 presents
programming procedures and computer programs written for both the handheld HP41C/CV/CX and
in BASIC language for the Apple 1le and lic transportable computers for the analysis (design) of
sections in flexure, shear, torsion, combined lcading (including compression). and members sub-
jected to biaxial loading, a: well as deep beams and corbels. As a result, the use of handbook charts
was kept to a bare minimum. The inclusion of extensive flowcharts with logical steps in each relevant
topic will make it possible for the reader to develop or use, without difficulty, such programs with
any handheld or desktop computer.

Selected photographs of various areas of structural behavior of concrete elements at failure are
included in all the chapters. They are taken from the published research work by the author with
many of his M.S. and Ph.D. students at Rutgers University over the past two decades. Additionally,
photographs of landmark structures, mainly in the United States, are included throughout the book
to illustrate the versatility of design in reinforced: concrete.

The textbook conforms to the provisions of ACI 318-83 with an eye to stressing the basics rather
than tying every step to the code, which changes once every six years. Consequently, no attempt
was made to tic any design or analysis step to the particular equation numbers in the code, but rather,
the student is expected to gain the habit of getting familiar with the provisions and section numbers
of the ACI code on a sepasate basis. In this manner, the student should not only master the
fundamentals presented in the textbook, but should also become well versed with the ACI code as
a dynanue. cver-changing document. Conversions to SI units are included in the illustrative exam-
ples throughout the book.

The various topicsthave been presented in as concise a manner as possible without sacrificing the
need for the instructional details of an introductory course in the subject. Hence the topic of
prestressed concrete has been left for more advanced works. The major portions of this book are
intended tor a first course at the junior or senior level of the standard college or university curriculum
in civil engineering. The contents should also serve as a valuable guideline to the practicing engineer
who has to kecp abreast of the state of the art in concrete, as well as the designer who is interested
in a concise treatment of the fundamentals.

Rutgers University : Edward G. Nawy
The State University of New Jersey
New Brunswick, New Jersey
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Photo 2 Chaochow Bridge on' Hsiaoho River, China (AD 605-617). (See p. 1.}

1.1 HISTORICAL DEVELOPMENT OF STRUCTURAL
CONCRETE

Use of concrete and its cementatious (volcanic) constituents, such as pozzolanic ash,
has been made since the days of the Greeks, the Romans, and possibly earlier ancient
civilizations. However, the early part of the nineteenth century marks the start of more
intensive use of the material. In 1801, F. Coignet published his statement of principles
of construction, recognizing the weakness of the material in tension. J. L. Lambot in
1850 constructed for the first time a small cement boat for exhibition in the 1855 World
Fair in Paris. J. Monier, a French gardener, patented in 1867 metal frames as rein-
forcement for concrete garden plant containers, and Koenen in 1886 published the first
manuscript on the theory and design of concrete structures. In 1906, C. A. P. Turner
developed the first flat slab without beams. ,

Thereafter, considerable progress occurred in this field such that by 1910 the
German Committee for Reinforced Concrete, the Austrian Concrete Committee, the
American Concrete Institute, and the British Concrete Institute were already estab-
lished. Many buildings, bridges, and liquid containers of reinforced concrete were
already constructed by 1920 and the era of linear and circular prestressing began.

The rapid developments in the art and science of reinforced and prestressed
concrete analysis, design, and construction have resulted in very unique structural

Photo 3 Felix Candela’s Xochimilco Restaurant, Mexico
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Photo 4 Afrikaans Languages Monu-
ment, Stelienbosch, South Africa (height
of the main dynamically designed hol-
low columns, 186 ft).

systems, such as the Kresge Auditorium, Boston; the 1951 Festival of Britain Dome:
Marina Towers and Lake Point Tower, Chicago; and many, many others.

Ultimate-strength theories were codified in 1938 in the USSR and in 1956 in
England and the United States. Limit theories have also become a part of codes of
several countries throughout the world. New constituent materials and composites of
concrete have become prevalent, including the high-strength concretes of a strength
in compression up to 20,000 psi (137.9 MPa) and 1800 psi (12.41 MPa) in tension.
Steel reinforcing bars of strength in excess of 60,000 psi (413.7 MPa) and high-
strength welded wire fabric in excess of 100,000 psi (689.5 MPa) ultimate strength
are being used. Additionally, deformed bars of various forms have been produced.
Such deformations help develop the maximum possible bond between the reinforcing
bars and the surrounding concrete as a requisite for the viability of concrete as a
structural medium. Prestressing steel of ultimate strengths in excess of 300,000 psi
(2068 MPa) is available. -

All these developments and the massive experimental and theoretical research
that has been conducted, particularly in the last two decades, have resulted in rigorous
theories and codes of practice. Consequently, a simplified approach has become
necessary to an pnderstanding of the fundamental structural behavior of reinforced
concrete elements.
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1.2 BASIC HYPOTHESIS OF REINFORCED CONCRETE

Plain concrete is formed from a hardened mixture of cement, water, fine aggregate,
coarse aggregate (crushed stone or gravel), air, and often other admixtures. The plastic
mix is placed and consolidated in the formwork, then cured to facilitate the acceler-
ation of the chemical hydration reaction of the cement/water mix, resulting in hard-
ened concrete. The finished product has high compressive strength, and low resistance
to tension, such that its tensile strength is approximately one-tenth of its compressive
strength. Consequently, tensile and shear reinforcement in the tensile regions of
sections has to be provided to compensate for the weak-tension regions in the rein-
forced concrete element.

- It is this deviation in the composition of a reinforced concrete section from the
homogeneity of standard wood or steel sections that requires a modified approach to
the basic principles of structural design, as will be explained in subsequent chapters’
of this book. The two components of the heterogeneous reinforced concrete section
are to be so arranged and proportioned that optimal use is made of the materials
involved. This is possible because concrete can easily be given any desired shape by
placing and compacting the wet mixture of the constituent ingredients into suitable
forms in which the plastic mass hardens. If the various ingredients are properly
proportioned, the finished product becomes strong, durable, and, in combination with
the reinforcing bars, adaptable for use as main members of any structural system.

1.3 ANALYSIS VERSUS DESIGN OF SECTIONS
}

From the foregoing discussion, it is clear that a large number of parameters have to
be dealt with in proportioning a reinforced concrete element, such as geometrical
width, depth, area of reinforcement, steel strain, concrete strain, steel stress, and so
on. Consequently, trial and adjustment is necessary in the choice of concrete sections,
with assumptions based on conditions at site, availability of the constitent materials,
particular demands of the owners, architectural and headroom requirements, the
applicable codes, and environmental conditions. Such an array of parameters has to
be considered because of the fact that reinforced concrete is often a site-constructed
compasite, in contrast to the standard mill-fabricated beam and column sections in
steel structures. )

A trial section has to be chosen for each critical location in a structural system.
The trial section has to be analyzed to determine if its nominal resisting strength is
adequate to carry the applied factored load. Since more than one trial is often neces-
sary to arrive at the required section, the first design input step generates mto a series
of trial-and-adjiistment analyses.

The trial-and-adjustment procedures for the choice of a concrete section lead to
the convergence of analysis and design. Hence every design is an analysis once a trial
section is chosen. The availability of handbooks, charts, desktop and handheld per-



