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CHAPTER I
LOCAL DECOMPOSITIONS OF CONTROL SYSTEMS

1. Introduction

‘ In this section we review some basic results from the theory of
linear systems, with the purpose of describing some fundamental pro-
perties which find close analogues in the theory of nonlinear systems.

Usually, a linear control system is described by equations of the
form

-

X = Ax + Bu
y = Cx

in which the state x belongs to X, an n-dimensional vector space and
the input u and the output y belong respectively to an m-dimensional
vector ‘space U and f%-dimensional vector space Y. The mappings
A: X~ xqu :U =X, C:X 2 Y are linear mappings.

Suppose that there exists a d-dimensional subspace V of X with
the following property: i

(i) V is invariant under the mapping A, i.e. is such that Ax € V for
all x € v;

then, it is known from linear algebra that there exists a basis for X
(namely, any basis (v1,...,vn) with the property that (v1,...,vd) is
also a basis for V) in which A is represented by means of a block-
triangular matrix

A A

1 12

0 Ay J
whose elements on the lower (n-d) rows and left d columns are vanishing.

Moreover, if this subspace V is such that:

(ii) V contains the image of the mapping B, i.e. is such that Bu € Vv
for all u € y;

then, choosing again the same basis as before for X, regardless of the

choice of basis in U, the mapping B is represented by a matrix

By

0



whose last n-d rows are vanishing.
Thus, if there

exists a subspace V which satisfies (i) and (ii),
then there exists a

choice of coordinates for X in which the control
system is described by a set of differential equations of the form

X) = BqaXg ¥ BgpXp + Byu

Xy = Ry%p
By x4 and X, we denote the d-vector and, respectively, the n-d vector
formed by taking the first d and, respectively, the last n-d coordina-
tes of a point x of X in the selected basis.

The representation.thus obtained is particularly interesting when
studyiné the behavior of the system under the action of the control
u. At time T, the coordinates of x(T) are

T
x1(T) = exp(A11T)x1(0) +Jexp(A11(T-T))A12exp(A22T)drx2(0) +
0
+fexp(A11(T 7))Byu(t)dr
0
xz(T) = exp(AzzT)xz(O)

From this we see that the set of coordinates denoted with X, does
not depend on the input u but only on the time T. The set of. points
that can be reached at time T, starting from x(0), under the action of
the input lies inside the set of points of X whose x, coordinate is
equal to exp(AzzT)xz(O). In other words, if we let x©(T) denote the
point of X reached at time T when u(t) = 0 for all t €[o0,Tl, we ob-
serve that the state x(T) may be expressed as

X(T) = xo(T) + v

where v is a vector in V. Therefore, the set of pointé that can be'
reached - at time T, starting from x(0), lies inside the set

o
= T) + V
ST x (T)

Let us now make the additional assumption that the subspace V,
which is the starting point of our considerations, is such that:

{iii) V is the smallest subspace which satisfies (i) and (ii) (i.e.

is contained in any other subspace of X which satisfies both (i)



and (ii)).

It is known from the linear theory that this happens if and only
if
n-1 .
v= ] Im(a'B)
i=0

and, moreover, that in this case the pair (A11,B1) is a reachable pair,
i.e. satisfies the condition

rank(B1 A11B1 .o« Agy B1) = d

or, in other words,. for each X4 € Rd there exists an input u, defined
on [0,T], such that

T
Xy = [ exp(A11(T-T))BJu(T)dt
0

Then, if V is such that the condition (iii) is also satisfiedqd,
starting from x(0) we can reach at time T any state of the form
x°(T) + v with v € V or, in other words, any state belonging to the
setnST. This set is therefore exactly the set of the states reachable
at time T starting from x(0).

This result suggests the following considerations. Given a linear
control system, let V be the smallest subspace of X satisfying (i) and
(ii) . Associated with V there is a partition of X into subsets of the
form

X +V

with the property that each one of these subsets coincides with the
set of points reachable at some time T starting from a suitable point
of X. Moreover, these subsets have the structure of a d-dimensional
flat submanifold of X.

An analysis similar to the one developed so far can be carried
out by examining the interaction between state and output. In this
case we consider a d-dimensional subspace W of X such that

(1) W is invariant under the mapping A

(ii) W is contained into the kernel of the mapping C (i.e. is such
that Cx = 0 for all x € W)

(iii) W is the largest subspace which satisfies (i) and (ii) (i.e.
contains any other subépace of X which satisfies both (i) and
(ii)).

Then, ﬂhere is a choice of coordinates for X in which the control
system is described by equations of the form



x1 = A”x1 + A12x2 + B1u
x2 = A22x2 + B2u
Yy = C%

From this we see that the set of coordinates denoted with X4 has
no influence on the output y. Thus any two initial states whose last
n-d coordinates coincide produce two identical outputs under any input,
i.e. are indistinguishable. Actually, any two states whose last
n-d coordinates coincide are such that their difference is an element
of W and, then, we may conclude that any two states belonging to a set
of the form x+W are indistinguishable.

Moreover, we know that the condition (iii), is satisfied if and
only if

n-1 i
W = N ker(CA™)
i=0

and, if this is the case, the pair (C2,A22) is observable, i.e. sa-
tisfies the condition

' ] ' d-1 -
rank(c2 AZZCér...(Azz) Cé) ~.d
or, in other words,

szexp(Azzt)xQ =0 = X, = 0

Then, if two initial states are such that their difference does
not belong to W, they may be distinguished from each other by the out-
put produced under zero input. ‘

Again we may synthesize the above discussion with the following
considerations. Given a linear control system, let W be the largest
subspace of X satisfyiné (i) and (ii). Associated with W there is a
partition of X into subsets of the form

X + W

with the property that each one of these subsets coincides Qith the
set of points that are indistinguishable from a fixed point of X. Mo-
reover, these subsets have the structure of a d-dimensional flat sub-
manifold of X. .

In the following sections of this chapter and inm the following

chapter we shall deduce similar decompositions for nonlinear control



systems.

2. Distributions on a Manifold -

The easiest way to introduce the notion of distribution 4 on a
manifold N is to consider a mapping assigning to each point p of N a
subspice A(p) of the tangent space TPN to N at p. This is not a rigo-
rous definition, in the sense that we have only defined the domain N
of A without giving a precise characterization of its codomain. ‘Defer-
r{ng for a moment the need for a more rigorous definition, we proceed
by addiﬁg some conditions of regularity. This is imposed by assuming
that for each point p of N tpere exist a neighborhood U of p and a set
of smooth vector fields defined on U, denbted {ri:i € I}, with the
property that,

A(q) = span{t,(q):i € 1}

for all g € U. Such an object will be called a smooth distribution on
N. Unless otherwise noted, in the foll6§ing sections we will use the
term "distribution" to mean a smooth distribution.

Pointwise, a distribution is a linear object. Based on this pro-
perty, it is possible to extend a number of elementary concepts re-
lated to the notion of subspace. Thus, if {Ti:i € 1} is a set of vector
fields defined on N, their span, written sp{t.,:i € I}, is the distribu-
tion defined by the rule(*) '

splt,:i €1}: p H'span{Ti(p):i €1}

If Ay and A2 are two distributions, their sum 4, + A2 is defined by
taking

N

.\1 +A2 i p HA1 (p) +:‘32(p)
and their interscetion b, O A, by taking '

1 2

a0 1, P Ay p) 0 AL (p)

(*) In order to avoid confusions, we use the symbol span{+} to denote any R-linear
combination of elements-of some R-vector space (in particular, tangent vectors
at a point). The symbol spi-} is used to denote a Jdistrilution (or a codistribu-
tion, see later).
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%

A distribution A1 is contained in the distribution A, and is written
Ay © A, if Ay(p) C A,(p) for all p € N. A vector field T belongs to a
distribution A and is written 1 € A if T(p) € A(p) for all p € N.

The dimension of a distribution A at p € N is the dimension of
the subspace A(p) of TpN. ' '

Note that the span of a given set of smooth vector fields is a
smooth distribution. Likewise, the sum of two smoéth distributions is
smooth. However, the intersection of two such distributions may fail
‘t9 be smooth. This may be seen in the following example.

(2.1) Ezample. Let M = nz, and

Lo 3 - 9
81 = sPligg + o)

- -2 5
AZ = sp((1+x1)'5x—1 + 3;;}

Then we have

(84 Mg (x) = {0} if x4 #0

n

(84 N Az)(x) A1(x) = Az(x) if x4 =0

This distribution is not smooth because it is not possible to find a

smooth vector field on R2 which is zero everywhere but on the line

xq = 0. a

~Since sometimes it is useful to take the intersection of smooth
distributions A1 and A2 , one may overcome the problem. that A1 N Az is
possibly non-smooth with the aid of the following concepts. Suppose A
is a mapping which assigns to each point p € N a subspace A(p) of TpN
and let M(A) be the set of all smooth vector fields defined on N which
at p take values in A(p), i.e.

4
M(a) = {1t € v(N):1(p) € A(p) for all p € N}

Then, it is not &ifficult to see that the span of M(A), in the
sense defined before, is a smooth distribution contained in A.

(2.2) Remark. Recall that the set V(N) of all smooth vector fields de-
fined on N may be given the structure of a vector space over R and,
also, the structure of a module over CW(N), the ring of all smooth
real-valued functions defined on N. The set M(A) defined before (which
is non-empty because the zero element of V(N) belongé to M(4) for any



A) is a subspace of the vector space V(N) and a submodule of the module
V(N). From this is it easily seen that the span of M(A) is contained
in a. 0O

Note that if A' is any smooth distribution contained in 4, then
A' is contained in the span of M(A), so the span of M(A) is actually
the largest smooth distribution contained in A. To identify this distri-
bution we shall henceforth use the notation

smt (A) & sp M(A)

i.e. we look at the span of M(A) as the "smoothing" of A. Note also
that if A is smooth, then smt(A) = A.

Thus, if A1 N A2 is non-smooth, we shall rather consider the dis-
tribution smt(A1 N Az).

(2.3) Remark. Note phat M(A) may not be the unique subspace of V(N),
or submodule of V(N), whose span coincides with smt(s). But if M' is
any oiher subspace of V(N), or submodule of V(N), with the property
that sp M' = smt(A), then M' C M(A).

(2.4) Example. Let N = R, ahd,

Then M(A) is the set of all vector fields of the form c(x)s% where
c(x) is a smooth functien defined on R which vanishes at x = 0.Clearly
A is smooth and coincides with smt(A). There are many submodules of
V(R) which span A, for instance

=
il

1 {1 € VR): T(x)

c(x)x%{— and c _€ c”mR)}

=
It

2 {1 € VR) : 1 (x)

c(x)xzai and ¢ € ¢ (R)}

x ”

Both are submodules of M(a), M2 is a submodule of’M but M1 is not a
submodule of M; because is not possxble to express every function
c(x)x as &(x)x2 with & € cCT(R).

(2.5) Remark. The previous considerations enable us to give a rigorous
definition of a smooth distribution in the following way. A smqoth‘
distribution is a submodule M of V(N) with the following property: if
6 is a smooth vector field such that for all p € N

8(p) € span{t(p):1 € M}



then 6 belongs to M. O

Other important concepts associated with the notion of distribu-
.tion are the ones related to the "behavior" of a given A as a "func-
tion" of p. We have already seen how it is possible to characterize
the quality of being smooth, but there are other properties to be con-
sidered. ’

A distribution A is nonsingular if there exists an integer d such
that

(2.6) dim A(p) = 4d

for all p € N. A singular distribution, i.e. a distribution for whi;h
the above condition is not satisfied, is sometimes called a distribu-
tion of variable dimension. If a distribution A is such that the con-
dition (2.6) is satisfied for all p belonging to an open subset U of

N, then we say that A is nonsingular on U. A point p is a regular point
of a distribution A if there exists a neighborhood U of p with the pro-
perty that A is nonsingular on U.

There are some interesting properties related to these notions,
whose proof is left to the reader.

(2.7) Lemma. Let & be a smooth distribution and p a regular point of
A. Suppose dim A(p) = d. Then there exist an open neighborhood U of
‘p and a set {T1""’Td} of smooth vector fields defined on U with the
property that every smooth vector field T belonging to A admits on U a
representation of the form ’

. a
(2.8) T= § ooyt
. 1=

where each <y is a real-valued smooth function defined on U. O

A set of d vector fields which makes (2.8) satisfied will be cal-
led a set of local generators for 4 at p.

{(2.9) Lemma. The set of all regular/points of a distribution A is an
open and dense submanifold of N.

(2.10) Lemma. Let A1 and A2 be two smooth distributions with the pro-
perty that 4, is nonsingular and A, ({p) Cc A,(p) at each point p of a
dense submanifold of N. Then A, C 4,.

(2.11) Lemma. Let A1 and A2 be two smooth distributions with the pro-
perty that by is nonsingular, A1 c A2 and A1(p) = Az(p) at each point
p of a dense submanifold of N. Then &, =4,. U



We have seen before that the intersection of two smooth distribu-
tions may fail to be smooth. However, around a regular point this

cannot happen, as we see from the following result.

(2.12) Lemma. Let p be a regular point of 4, , A, and 4, N 8,. Then
there exists a neighborhood U of p with the property that A, N A,
restricted to U is smooth. [0

A distribution is involutive if the Lie bracket [11,12] of any
pair of vector fields Ty and T, belonying to A is a vector field which
belongs to A, i.e. if ' .

Ty €8, 1, €0 IT1,12] € A

(2.13) Remark. It is easy to see that a nonsingular distribution of
dimension d is involutive if and only if, at each point p, any set of
local generators TyreeerTy defined on a neighborhood U of p is such
that

d
lTi,Tj] = RZ ciiTy

where each cij is a real-valued smooth function defined on U. [
If f is a vector field and A a distribution on N we denote by
{£f,4] the distribution

(2.14) [£,8] = spllf, 1] € V(N):1 € A}

Note that | f,A]l is a smooth distribution, even if A is not. Using this
notation, one can say that a distribution is involutive if and only if
[£,A] C A for all f € A.

Sometimes, it is useful to work with objects that are dual to the
ones defined above. In the same spirit of the definition given at the
beginning of this section, we say that a codistribution @ on N is a
mapping assigning to each point p of N a subspace i (p) ‘of the cotangent
space T;(N). A smooth codistribution is a codistri?ution 2 on N with
the property that for each point p of N there exist a neighborhood U
of p and a set of smooth covector fields (smooth one-forms) defined on

U, denoted {mi:i &€ 11, such that
2(q) = span{w,(q):i € It

for all g € U.

In the same manner as we did for distributions we may define the
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dimension of a codistribution at p, and construct codistributions by
taking the span of a given set of covector fields, or else by adding
or intersecting two given codistributions, etc. always looking at a
pointwise characterization of the objects we are dealing with.

Sometimes, one can construct cédistributions starting from given
distributions and conversely. The natural way to do this is the fol-
lowing: given a distribution A on N, the agnnihilator of A, denoted AL,
is the codistribution on N defined by the rule

1 * * *
A ip P iv eTpN : {v ,v)=0 for all v € A(p)}

Conversely, the annihilator of Q, denoted QL, is the distribution
defined by the rule

* *
ot :pP {v € TpN’ (v ,v)= 0 for all v € Q(p)}

Distributions and codistributions thus related possess a number
of interesting properties. In particular, the sum of the dimensions of
A and of Al is equal to the dimension of N. The inclusion 4, C A, is

L

satisfied if and only if the inclusion A1 ) Aé is satisfied. The an-

. nihilator (A1 N AZ)L of an intersection of distributions is equal to
. the sum A# + Aé. .

Like in the case of the distributions, some care is required when
dealing with the quality of being smooth for codistributions construc-
ted in some of the ways we described before. Thus it is easily seen
that the span of a given set of smooth covector fields, as well as sum
of two smooth codistributions is again smooth. But the intersection of
two such codistributions may not need to be smooth.

Moreover, the annihilator of a smooth distribution may fail to be

smooth, as it is shown in the following‘example.

(2.15) Example. Let N = R

A = spix §§l

Then
At (x) = {0} if x £ 0
p(x) = TN if x = 0

and we see that AL is not smooth because it is not possible to find a

smooth covector field on R which is zero everywhere but on the point



1

x =0, 0

Or, else, the annihilator of a smooth codistribution may not be
smooth, as in the following example.

(2.16) Example. Consider again the two distributions Lo and Az describ-
ed in the Example (2.1). One may easily check that

i
Ay = spldxy - dx,}
ot = spldx, - (1 +x,)dx,}
2 T SPIAXy 179%
The intersection A1 N A2 is not smooth but its annihilator A# +A; is

L

smooth, because both 8y and A; are smooth. O

One may easily extend Lemmas (2.7) to (2.12). In particular, if
p is a regular point of a codistribution @ and dim Q(p) = d, then it
is possible to find an open neighborhood U of p and a set {m1,...,wd}
of smooth covector fields defined on U, such that every smooth covector
field w belonging to @ can be expressed on U as

d

where each cy is a real-valued smooth function defined on U. The set.
(w1,...,md} is called a set of local generators for Q at p.

We have seen before that the annihilator of a smooth distribution
A may fail to be smooth. However, around a regular point of A this
" cannot happen, as we see from the following result.

{2.17) Lemma. Let p be a regular point of A, Then p is a regular point
of AL and there exists a neighborhood U of p with the property that at
restricted to U is smooth. O

We conclude this section with some‘notations.that are frequently
used. If f is a vector field and 9 a codistribution on N we denote by
LfQ the smooth codistribution

' *
(2.18) LeQ = sp{wa € V (N):w € Q}-

If h is a real-valued smooth function defined on N, one may as-
sociate with h a distribution, written ker(h,), defined by

ker(h,): p* {v € T N :h,v. g 0}

p

One may also associate with h a codistribution, taking the span of the

Sy
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covector field dh. It is easy to verify that the two objects thus de-
fined are one the annihilator of the other, i.e. that

(sp(dh))¥ = ker(h,).

3. Frobenius Theorem

In this section. we shall establish a correspondence between the
notion of distribution on a manifold N and the existence of partitions
of N into lower dimensional submanifolds. As we have seen at the be-
ginning of this chaﬁter, partitions of the state space into: lower di-
mensional submanifolds are cften encountered when dealing with reach-
ability and/or observability of control systems.

We begin ogr.analysis with the following definition. A nonsinguiar
d-dimensional distribution A on N is completely integrable if at each
p € N there exists a cubic coordinate chart (V,{) with coordinate func-
tions Eqreeesb , such that '

(3.1) Alq) = span{(sg;)q,..L,(—g—) b

for all q € V.

s

There are two important consequences related to the notion of
completely integrable distiibution. First of all, observe that if there
exists a cubic coordinate chart (V,£{), with coordinate functions
51,.;.,£n , such that (3.1) is satisfied, then any slice of V passing
through any point p of V and defined by

(3.2) sp = {g € Vigi(q) = £,(p); i = d+t,...,n}
(which ié a q—dimensional imbedded submanifold of N), has a tangent
space which, at any point g, coincides with the subspace A(q) of TqN.

Since the set of all such slices is a partition of V, we may see
that a completely integrable distribution A induces, locally around
each point p € N, a partition into lower dimensional submanifolds, and
each of these submanifolds is such that its tangent space, at each
point, agrees with the distributién A at that point.

The second consequence is that a completely integrable distribu-
tion is finvoiutive. In order to see this we use the Zefinition of in-
volutivity and compute the Lie bracket of any pair of vector fields
belonging to A. For, recall that in the & coordinates, any vector

field 1 defined on N is represented by a vector of the form



