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Preface

‘This textbook is for a course in advanced solid-state theory. It is aimed at
graduate students in their third or fourth year of study who wish to learn
the advanced techniques of solid-state theoretical physics. The method of
Green’s functions is introduced at the beginning and used throughout.
Indeed, it could be considered a book on practical applications of Green’s

" functions, although I prefer to call it a book on physics. The method of
Green’s functions has been used by many theorists to derive equations
which, when solved, provide an accurate numerical description of many
processes in solids and quantum fluids. In this book I attempt to summarize
many of these theories in order to show how Green’s functions are used
to solve real problems. My goal, in writing each section, is to describe
calculations which can be compared with experiments and to provide
these comparisons whenever available.

The student is expected to have a background in quantum mechanics -

at the level acquired from a graduate course using the textbook .by either
L. I. Schiff, A. S. Davydov, or I. Landau and E. M. Lifshiftz. Similarly,
a prior course in solid-state physics is expected, since the reader is assumed
to know concepts such as Brillouin zones and energy band theory. Each
chapter has problems which are an important part of the lesson; the
problems often provide physical insights which are not in the text. Sometimes
the answers to the problems are provided, but usually not. It is hoped that
the student can learn the subject by using the book as a study guide, since
small enroliments often restrict the availability of courses at the advanced
level.

I am often asked why I wrote this book. The questioner usually has
an understanding of the work involved and so regards my effort as reflecting
poorly upon my sanity. On the whole I agree, and if | knew at the beginning
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vi Preface
the actual investment of time, I probably would not have started. The
actual time is about four to five hours per page, which is roughly divided
equally among writing, editing, and library searching. My reason for
under:aking this project was the great need for someone to do it and the
disinclination of anyone else to write a comprehensive advanced textbook
on solid-state theory. My own graduate students kept asking me for the
standard reference on a number of topics, and 1 became tired of replying
that none exist. My objective was to take standard subjects, such as the
electron gas or polaron theory, and to summarize what is generally known.
All the steps are retained in the derivation, so that the answers are obtained
by starting from the beginning and working through to the end.

The volume is restricted to a description of the many-particle theory
of solids. There.is also some discussion of quantum fluids, which have
historically been part of solid-state theory. The important subject of classical
fluids is omitted entirely. In solids and liquids, the forces between pairs of
particles are well understood, and the starting Hamiltonian for the problem
is accurate. Here we are better off than our brethren in nuclear or stellar
physics, since they are often groping for the Hamiltonian. In solids, the
only problem is that there are usually 10% particles in the system. Thus
we have a well-defined many-body problem which is easy to state: We
have simple forces between particles, and the only complication is the large
number of particles. In this regard, the atomic theorists have an easier
task since they usually have fewer than one hundred electrons in their
theoretical system. Consequently, they have been more successful in achiev-
ing a quantitative description of atoms. However, solid-state theory has a
richer variety of phenomena: magnetism, superconductivity, superfluidity,
phase transitions, etc. We have been successful in describing most of these
phenomena with great accuracy—magnetism is probably the greatest excep-
tion. There is no doubt that solid-state theory has been the center of develop-
ments in many-body theory, and our successes are followed by exporting
these ideas to other disciplines; e.g., the plasma theory of metals becomes
the giant dipole resonance of nuclei.

The topics chosen for discussion were selected on the basis of what
every well-rounded theorist should know. Thus basic subjects such as the
electron gas, electron-phonon interactions, transport theory, linear response,
superconductivity, and superfluidity are covered. Other subjects were
deemed equally important, but I ran out of energy, and the book became .
tpo long anyway ; the important subjects which were omitted are the Kondo
effect, Hubbard models, Anderson models, and magnetic systems. Also
omitted were two important subjects which deserve large textbooks of
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their own: renormalization group and the Hohenberg—Kohn-Sham theory
of the inhomogeneous electron gas.

Anyone writing an advanced book is going to receive some criticism.
No one is expert in all advanced subjects. There are many topics on which
I am not an expert and not even well informed. In this situation any choice
of action will be criticized. If the topic is omitted, I am criticized for re-
garding it as unimportant. If it is included, then I am criticized for not
providing the expert viewpoint. The only solution is to do one’s best and
to challenge critics to write their own book.

Historians of science have described numerous and competing models
for how science advances, One model is the Ortega hypothesis which
suggests that science advances by a large number of mediocre scientists
each making a small incremental contribution. On the opposite end of
the spectrum is a quite different view that science advances by great leaps
forward by the intellectual giants such as Newton and Einstein. The rest
of us merely fill in the details they overlook. In preparing this manuscript,
I became aware that solid-state theory has advanced by a process inter-
mediate between these extremes. In each chapter, usually six or eight
theorists seem to dominate the subject and to provide most of the major
concepts and understanding. But in the next chapter, on another subject,
it is usually another entirely different group of six to eight theorists who
provide the progress. Thus the advance of science appears to occur by a
large number of talented workers, although in each topic only a few are
important.

Quite often in the text it is necessary to evaluate standard integrals
from tables. I use Table of Integrals, Series and Products by 1. S. Gradshteyn
and 1. M. Ryzhik (Academic Press, New York, 1965). It seems to be avail-
able worldwide. All special integrals are referred to in this present book
as “G&R” followed by the integral number.

It is a pleasure to thank many associates for the substantial assistance
I have received in the preparation of the book. About half of the writing
was done while I was on leave, from Indiana University, as visiting Professor
at Chalmers University of Technology in Gothenburg, Sweden. I wish to
thank Professor A. Sjslander and S. Lundgqvist for this stimulating and
very pleasant year. My financial support was provided by the Nordic
Institute for Theoretical Astrophysics (NORDITA) in Copenhagen, and
I wish to thank Professors A. Bohr, A. Luther, and J. W. Wilkins for
arranging my visiting professorship. The entire draft was read by S. M.
Girvin, who deserves special thanks for catching many lapses in the first
draft. Additional proofreading was also provided by M. Jonson and P. Tua.

p—



viii : Preface

Finally, I wish to thank my family—Sally, Chris, Susie, and Roy—for
their understanding and quietness during the eighteen months of prepara-
tion.

Indiana University Gerald D. Mahan
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Chapter 1
Introductory Material

1.1. HARMONIC OSCILLATORS AND PHONONS

First quantization in physics refers to the property of particles that
certain operators do not commute:

[x,pz] = ih
) - )

(.1.1)

Later it was realized that forces between particles were caused by other
particles: Photons caused electromagnetic forces, pions caused some nuclear
forces, etc. These particles are also quantized, and this leads to second
quantization. The basic idea is that forces are caused by particles and that
the number of particles is quantized: one, two, three, etc. This imparts
a quantum nature to the classical force fields.

In solids the vibrational modes of the atoms are quantized because
of first quantization (1.1.1). These quantized vibrational modes are called
phonons. An electron can interact with a phonon, and this phonon can
travel to another electron, interact, and thereby cause an indirect interaction
between electrons. Indeed, the phonon does not need to move but can vibrate
- until the next electron comes by. In any case, phonons play a role in solids
similar to that in the classical fields of physics. They cause quantized
interactions between electrons. '

Phonons in solids can usually be adequately described as harmonic
oscillators. Later we shall have a fuller description of the effects of an-
harmonicity. But, for the moment, this should be sufficient motivation to
study the harmonic oscillator. The one-dimensional harmonic oscillator

1




2 Chap. 1 e Introductory Material

has the Harililtonian

ot = K
pe
"
)
T o = plhmw)a
and
H— ﬁ;" ( aa; + 52) (1.1.2)

The harmonic oscillator Hamiltonian has a solution in terms of Hermite
polynomials. The states are quantized such that
[

= fiw(n + Py, (1.1.3)

where n is an integer. One can also learn by direct calculation that the
fo!lowmg matnx elements exnst for the operators x and p:

§ 1/2
@ 1511 = () T s + 072000
\ (1.1.4)
@ lpimy=— 1 o L o (O L R ST NS

It is customary to define two dimensionless operators as follows:

O RN R

o= (=) (5]

They are Hermitian conjugates of each other. They are sometimes called
raising and lowering operators, but we shall call them creation (a') and
destruction. operators (a). The Hamiltonian (1.1.2) may be written with
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them as

H= =5 [aat -+ ata)

ST e ) (e e )

2z

A very important property of these operators is called commutation relations.
These are derived by considering how they act, sequentially, on any function
f(&). The two operations a and a' in turn give

R e - LG EENCT R

while the reverse order gives
dafi®) = 5 (- 5o )¢+ FAVCER LTRSS
) ( - 9¢ ( o0& 2
These two results are subtracted,

[aa’ — a'a]f(&) = f(&) - ;(1'1'6)

and yield the original function. The operator in brackets is replaced by
a bracket with a comma,

[aat — ata] = [a, a'l

which means the same thing. The relationship (1.1.6) is usually expressed
by omitting the function f(¢):

[a,a'] =1 (1.1.7)
In a similar way, one can prove that

{a,a] =0

1.1.8
la',a'l1 =0 (.18)
These three commutators, plus the Hamiltonian

how
2

H = —ﬁ% [aa" + a'a] = l[aa" — a'a -+ 2da%a] = Awlata + 3] (1.1.9)
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completely specify the harmonic oscillator problem in terms of operators.
With these four relationships, one can show that the eigenvalue spectrum
is indeed (1.1.3), where n is an integer. The eigenstates are

In> = (a'))m | 0>

where | 0) is the state which obeys
al0>=0

and where the n! is for normalization. If one operates on this state by a
creation operator, one gets

a'|n) =

1
Gy @0 =

=@+ 1) |n+1)

+ 1
T D @0 10

the state with the next highest integer. Thus the only matrix element
between states is

<n' | a* |n> = (n+ 1)V*ponp

If we take the Hcrmitiap conjugate of this matrix element,
(nla|ny =@+ 1)V, 0y

and exchange dummy variables » and n’, we obtain
L' |a|n) = (n)*8picpy

or '

alny =@ |n = 1>

So the destruction operator a lowers the quantum number. Thus operatmg
by the sequence

a'a|n) = a'(m)* |n — 1)) = (n)"%a" |n — 1) ='n | m>

gives an eigenvalue n, ‘which verifies the Hamiltonian (1.1.3). Furtherrﬁore,

- using the original definitions (1.1.5) permits us to express x and p in terms




