

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

126

Microcomputer

System Design

An Advanced Course
Trinity VCoIIege Dublin, June 1981

~ Springer-Verlag
Berlin Heidelberg NewYork 1982
5506547

Editorial Board

W. Brauer P.Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editors

Michael J. Flynn /
Computer Systems Laboratory _ ‘e ™
Stanford University DTS S
Stanford, CA 94305, USA

o

Neville R. Harris

Department of Computer Science
School of Engineering

Trinity College

University of Dublin

Dublin 2

Ireland

Daniel P. McCarthy

Department of Computer Science
School of Engineering

Trinity College

University of Dublin

Dublin 2

Ireland

AMS Subject Classifications (1979); 68-02, 68 A05, 68 B20
CR Subject Classifications (1981): 4.1, 4.2, 4.3, 6.1, 6.2, 6.3

ISBN 3-540-11172-7 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-11172-7 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part of the material
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under

§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort*, Munich.

© by Springer-Verlag Beriin Heidelberg 1982

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.

2145/3140-543210 o

-

PREFACE

The main European tradition is for computer people to be educated in either the
software or the hardware side of computing. The Computer Scientist graduates with
his knowledge of operating systems, compilers, data structures, etc. and happily
enters the field of software and has no contact with computer hardware except as a
user. Engineers generally graduate with a knowledge of Electronics and very little

knowledge of the software side.

The advent of microcomputers has geen the Computer Scientist trylng to increase his
hardware knowledge in order to implement systems. It has also seen the Engineer
implementing large systems using: assembly language or struggling with interfaces

to operating systems and high level languages. It is now evident that in order to
use microcomputers effectively system designers require a broad knowledge of computer

hardware, interfacing, software, and design tools.

Because of this we proposed a microcomputer system design course which would
1ntegra£e the hardware and software sides of microcomputers and brinsvtosether
academica/practitioners from both diséiplines. In 1879 a course proposal was made
to the National Board of Science and Technology (N.B.8.T.) Ireland snd to the
Informatics Training Group of the EEC Bclentific and Technical Research Committee
(CREST). The proposal was enthusiagtically received and supported.

Lecturers were chosen to cover the main areag of the syllabus and during the last
week of Septembsr 1980 a week-long meeting took place in County Wicklow for the
detailed planning. It was agreed that the gyllabus should "span development from
silicon technology to software and should bring together current techniques in LSI/
VLSI design, computer structures and languages and show their application to, and

implication for, microcomputer gystem designs". A detailed syllabus was prepared
resulting in this set of course notes.

The course ran in July 1981 and had approximately 75 attendees from ten countries
whose enthusiasm and interest made the program all the more interesting for all.
A preliminary version of these notes was published at Trinity College for use in

the course. This Springer-Verlag edition includes revisions based on presentations,

correctionﬁ and some new material.

Acknowledgements:
With great pleasure we take this opportunity to express our gratitude and appreciat-

ion to:

- the EEC for their financial sponsorship and to the Informatics Training Group
of the EEC Scientific and Technical Research Committee (CRES.) fox their

support and encouragement.

- the National Board of Science and Technology for their financial sponsorship,
advice and encouragement. In thig regard special thanks are due to
Dr. B. O'Shea.

- the lecturers for their full co-operation during the preparatory seminar,

planning of the course, and gubmission o2 course notes and the course itself,

- Mrs. Janet Hogan, our Administrative Secretary, for her cheerful organisation
of these course notes and her efficient, willing administration of the course.

- Professor J. G. Byrne, Head of Department of Computer Science, Mrs. H. Smith
and Miss Susie Pakenham-Walsh, and to all the members of our staff who have
helped in the organisation of this course. '

- Prof. F. Bumnexr ¢f the University of Manchester who provided early council on the
course organisation and lecturers. Bvents congpired to prevent him from a
later, more direct involvement with the course.

= The course presentation was assisted by the use of several video taped lectures
originally presented at Stanford University. We are grateful to the Stanford
Computer Systems Laboratory for making these available and to the TCD
Communications Centre for use of its video facilitiea during the course.

M. J. Flynn
N. R. Harris
D. P. McCarthy

TABLE OF CONTENTS

PERSPECTIVE ON MICROCOMPUTERS

M. J. FPlyon, Department of Computer Science, Trinity College, Dublin.

(on leave - Stanford Universgity)

INTEGRATED CIRCUIT PHYSICS AND TECHNOLOGY .

J. F. Gibbona and J. D. Shott, Stanford Electronic Laboratories,
Stanford University, Stanford.

- Basic Principles of MOS Devices and Integrated Circuits

- Introduction to MOS Chip Design

- Basic IC Fabrication Principles

- The IC Fabrication Process

- Propogation Delay and ECL

COMPUTER AIDED DESIGN FOR MICROCOMPUTER SYSTEMS

D. Lewin, Department of Electrical Engineering and Electronics,
Brunel University, Uxbridge.

- Introduction

- The Design Problem

- Methods of Specification and Evaluation

- Simulation and Testing

- Synthesis Tools

PROPERTIES OF INSTRUCTION SET PROCESSOR
D. Aspinall, Department of Computation, U.M.I.S.T., Manchester

- Introduction
- Ingtruction Set Processor - Section 1
- Instruction Set Processor - Section II

- Concluaion

CUSTOMIZED MICROCOMPUTERS

M. J, Flynn, Department of Computer Science, Trinity College, Dublin.

(on leave - Stanford University)

- Introduction

- Some Fundamentals

- Architecture and Language

- Architecture and Technology

- Hosts without a Cuatomized Architecture

- Customized Language Oriented Architectures
= A DEL Microcomputer

~ Some Tentative Conclusions

~ Some Overall Concluaions

25
32
45
57

65
66
76
100
120

138
144
162
175

182
185
191
195
199
205
214
219
221

Vi

HIGH LEVEL SEQUENTIAL AND CONCURRENT PROGRAMMING

R. H. Perrott, Department of Computer Science, The Queen's University,
Belfast. ‘

Sequential Programming

- Brtief History

- Elementary Data Structures

~ Advenced Data Structures

- Program Statements

~ Block Structure

- Recursion

- Summary

- References

Concurrent Programming

- Introduction

- Mutual Exclusion

- Process Synchronisation

- Mesrage Passing Primitives

- Concurrent Programming Languages
= Summary

- References

MICROCOMPUTER OPERATING SYSTEMS

N. R. Harris, Department of Computer Science, Trinity College,
Univerasity of Dublin, Dublin 2.

- Introduction

- Spooling Operating Systeia

- Multi Access Systems

~ Interprocess Communication

- Process Scheduling

- Memory Management

- File 8yatems

- Stngle‘U-er Operating Systems

- References

223
224
225
229
231
236
239
240
241

242
243
244
253
259
263
271
271

273
274
279
284
287
287
295
300
301

i

{(0S TV

Vil
NOTES ON DISTRIBUTED SYSTEMS OF MICROPROCESSORS
G. J. Popek, University of California at Los Angeles

Introduction
~ Motivations for Distributed Computing

- Differences between Distributed and Centralized Systems

Bandwidth and Delay Isgues

A Survey of Diatributed System Issues
- Newwork Transparency

- Problem Oriented Protocols

- Atomic and Reliable Operation

~ Multiple Copy Support

- Synchronization

- Deadlock in Distributed Systems

Locus Case Study
- Introduction
- General System Architecture
- Reliability

- Recovery

- Performance and its Impact on Sofiware Architecture

- Interpretation of Results
Conclusions
Bibliography

LILITH : A PERSONAL COMPUTER FOR THE SOFTWARE ENGINEER
N. Wirth, Federal Institute of Technology (ETH), Zurich.

- Abstract

- Introduction

- Project Higtory and Overview

- Modules and Interfaces in Modula-2
- Coroutines and Processes

- The Operating System

- Separate Compilation of Modules

- The Architecture of the LILITH Computer
~ The LILITH Instruction Set

- The LILITH Hardware Structure

- Conclusions

- References

- I"igures

303
303
307
308

309
316
317
327
330
330

331
332
336
338
338
344
346
346

349
350

. 351

354
367
361
364
366
367
371
378
380
382

fERSPECTIVE ON MICROCOMPUTERS

Michael J. Flynn
Department of Computer Science
Trinity College, Dublin
(on leave -~ Stanford University)

It is the thesis of this introduction, and indeed this Course, that
the study of Microcomputers is not simply the study of very small
computers. It is that the radical decrease in the cost of technology
has significantly altered the designers and user's view of realizing
systems' applications.

From the point of view of the designer the Microcomputer is an integrated
computer engineering discipline encompassing and relating such studies
as:

- technology

- computer aided design (CAD)

- computer architecture

- operating systems

- language

- environment /function
From the users' point of view the Microcomputer is an amplifying systems

component. Unlike simple signal amplifiers, the Microcomputer
amplifies behaviour -~ or "intelligence" (Fig. 1). Given an input, i,
the output is any response based on the behaviour of (i), (B(i)); not
just a simple gain multiplier as in more familiar amplifiers. These

components (designated pyBj on Fig. 2 - representing the jth behagiour
or programmed response to an input signal) may be connected in arbitary

patterns to create complex system interactions. The reader will note
the need for a new "circuit theory" - a theory of complex behaviour
interaction.

Coupling these views is the realization that the more integration of
function (behaviour) that occurs during the design the better the
response (i.e. performance) of the system's component. Offsetting
this is that the very integration specializes the resultant design,
limiting its overall applicability and increasing effective per unit
cost - since design costs are fixed. Only by reducing design costs
(through CAD) can we hope to realize the potential inherent in the
technology.

i —y G —— G x i

A familiar amplifier increase signal energy

i — uC _____7B(i) - the microcomputer

amplifies intelligence

Figure 1 : Microcomputer : Am intelligence amplifying component

uB1

environment — uBg pBo

> output

B3

I

Figure 2 : Interconnected microcomputers

technology

architecture

function

Figure 3 . Early computers

It is useful to review the changing nature of computer design in an
historical perspective; to situate the Microcomputer environment.

Early computer development (pre-tiransistor)

Perhaps one might even call this the '"classical period" of computer
design because there was a relatively high degree of inter—disciplinary
understanding on design (Fig. 3). With cost dominated by technology
the architecture closely reflected the particular function within
severe technological limitations: the "form closely followed the
function". Of course designers considerations were much simplified
by modern standards -~ there were no CAD, language or operating systems
considerations, In these early systems the user was required to
display considerable familiarity with the technology for efficient
functional execution. For example, in many drum based computers
proper placement of the next instruction depended on the execution
time of the current instruction.

The Middle Ages - Batch Computing (Fig. 4)

As technology evolved and the cost per computation decreased secondary
functions were taken over by the computer, viz. high level languages
to improve programmer productivity, operating systems to manage system
resources. By the early 1960's the "batch processing system" had
fully evolved. In this environment the programmer would write a
complete program in a suitable higher level language (only two were

in really common use: TFortran and Cobol), submit it to the system
which would translate all programs written in a particular language

at the same time, then one by one load and execute them (batched
together), and finally print all the results. The batch system was a
further evolution in the recognition of the decreasing cost of the
computer vis-a-vis the human being.

A few points about these early systems are worth recalling to mind.

The costs were dominated by the "system"; including processor tech-
nology, input-output equipment and the supporting management facilities.
In fact, because the (human) management function was so important at
this time it was very slow to respond to technology which would
decentralize this responsibility. Even today the residue of this
centralized "computer centre'" management philosophy still persists.

\

5

(B |
o
<
ot

47

Figure 4

technology

CAD

architecture

language

function

operating
systems

Middle Ages - Batch Computing

technology

J

CAD

architecture

language ___#

operating systems

. |

network!

communidations
1]

- - -

—

_i:TA'T T

function 1 function 2

Figure 5 : Later Ages - Time Sharing

function 3

oThe genesis of CAD was developed at this time - mainly. for the rathey

unglamorous role of production control. "Unglamorous", perhaps, but
a number of otherwisé successful commercial ventures failed due to the
lack of systematic production (quality) control.

sEarly higher level languages were "low level" by latter standards -
they were sensitive to machine architecture and execution performance.

The latter ages - "time sharing" and beyond (Fig, 5)

Within ten years the batch model had largely been replaced by the time
sharing system. As processor technology costs continued to deéline,
the relative emphasis on direct user costs increased. Thus fime
sharinngas introduced as an aid to programmer productivgty accompanied
by increasing diversity and sophistication in high level languages.
Quick response to multiple users using diverse languages/functional
environments required still further sophistication in operating systems.
One may truly speak of this age as the '"baroque' era of system design.
The very complexity of such systems - especially the operating systems -
designed to serve a universal user - is its great weakness. Again
many commercial ventures failed because of inability to constrain the
complexity and universality of the system.

Language design became almost as complex; with some (nameless) efforts

proving to be equally unsuited to man or machine ("man and machine
independent").

At the same time, CAD tools improved at a modest pace to include many

useful hardware design aids - simulation, test, wiring printed circuit
layout, etc.

VLSI - The era of distributed intelligence

Question : How does one design a system with a very low cost technology?
Answer : Use as much of it as you can.

The message for today's designers is to distribute function/capability
through low cost technology while sharing only expensive resources

(e.g. centralized data banks). But, as many have already noticed,
neither a small computer or program is "small" when fully situated
with interface hardware and software. Clearly, the interface problem

limits the applicability of the technology. And design costs limit

™™ !

el

the use of the.technology in solving the interface problem. The

CAD of earlier times is inadequate in coping with the complex
requirements of modern technology. Linear improvements in minimizing
a feature dimension result in a squared improvement in logic per unit
areasa, Increases in logic gates increase the CAD complexity (for

layout, simulation, test, etc.) by a power function.

Some problems (ald opportunities) for the VLSI era

The growth in complexity illustrated by CAD (above) continues the
nigher one goes into the design process - architecture, operating
systems, language - but it is basically also an increase in design
opportunity, the ability to realize complex design which would have
been otherwise infeasible.

We can summarize some of these problems/opportunities as follows:

1. CAD tools to allow ready use (verified and testable) of the
technology. '

2, Architectural designs which are optimized to the execution of

particular language/operating system emvironments.

3. Operating systems which provide efficient local services as well
as reliable communications to central resources.

4. Languages which are matched to function (comprehensible by both
man and machine).

5. Data communications networks which are flexible and reliable and

allow a variable balance between distributed and central
intelligence.

The above is certainly not a comprehensive list - it is a departure
point for those participating in the use of these notes and lectures.

The ant

We are frequently concerned with the limits of technology - the
ultimate number or speed of logic gates per unit volume or enérgy.

A more interesting question concerns the limits of design - independent
of technology: our ability to represent ideas, languages and archit-
ectures, If we confront today's technologist with the possibility of
a 100,000 gate chip, each gate switching with energy of 1pJ(1 x 10-12

8

watt-seconds), he would certainly regard this as highly probable, if
not now, then in the not far distant future. Yet the brain of the
common ant consists of 100,000 neurons, each switching with energy

of about 1pd. And the architect/designer would not be at all sanguine
about duplicating anything like the sophistication or complexity of
such a creature. Thus even with the advantage of over a million

times in speed (logic gates are much faster and use correspondingly
more power than neurons giving the same energy product), we - the

users of technology - have a long way to go before approaching a design
limit.

Well, perhaps with several hundred million years of engineering
effort

INTEGRATED CIRCUIT PHYSICS AND TECHNOLOGY

J. F. Gibbons and J. D. Shott
Stanford Electronic Laboratories
Stanford University

Stanford, CA 94305/USA

Our purpose in these lectures is to introduce the physical principles on which inte-
grated circuit behavior depends and to show how semiconductor technology is employed
to fabricate integrated circuits that behave 'according to these principles. Qur
presentation of this subject will necessarily be highly condensed and oversimplified.
However, the analysis to be offered is conceptually correct and in any case is inten-
ded to provide only a broad understanding of the role that semiconductor physics and
technology play in the solution of electronic systems problems. References are pro-
vided for those wishing a degper appreciation of the topics to be presented.

We will begin with a discussion of the basic principles of MOS integrated circuits,
leading to a discussion of both CMOS gate arrays and the "sticks* approach to IC
chip design that has been so successfully pioneered by Mead and Conway. We follow
this discussion with an outline of the fabrication processes that are used to make
integrated circuits. We conclude with a discussion of bipolar digital technology
and some remarks that compare this technology with its MOS counterpart.

1. Basic Principles of MOS Devices and Integrated Circuits

1.1 What is a Semiconductor ?

Solid state materials can be divided broadly into three categories: conductors
(i.e., metals), semiconductors, and insulators. Integrated circuits contain repre-
sentatives of each of these types of material. However it is the special properties
of crystalline semiconductors that provide the signal amplification and switching
characteristics that are necessary for the construction of electronic systems. It is
therefore appropriate to begin with a brief description of those properties of crys-
talline semiconductors that are essential to the operation of integrated circuits.

The Conduction Process. On a microscopic scale, current consists of a flow of
charged particles, called carriers. The flow of electrons in a metal in response to
an applied electric field is a familiar example. Metals have an abundance of free
electrons, that is, electrons which can readily move within the material. Because
the number of free electrons is large, metals can conduct currents readily with the
application of very small electric fields.

