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Foreword

The present book gives an exposition of the classical basic algebraic
and analytic number theory and supersedes my Algebraic Numbers,
including much more material, e.g. the class field theory on which I make.
further comments at the appropriate place later.

For different points of view, the reader is encouraged to read the collec-
tion of papers from the Brighton Symposium (edited by Cassels-Frohlich),
the Artin-Tate notes on class field theory, Well's book on Basic Number
Theory, Borevich-Shafarevich’s Number Theory, and also older books like
those of Weber, Hasse, Hecke, and Hilbert’s Zahlbericht. It seems that
over the years, everything that has been done has proved useful, theo-
retically or as examples, for the further development of the theory. Old,
and seemingly isolated special cases have continuously acquired renewed
significance, often after half a century or more.

The point of view taken here is principally global, and we deal with
local fields only incidentally. For a more complete treatment of these,
cf. Serre’s book Corps Locaux. There is much to be said for a direct global
approach to number fields. Stylistically, I have intermingled the ideal
and idelic approaches without prejudice for either. I also include
two proofs of the functional equation for the zeta function, to acquaint
the reader with different techniques (in some sense equivalent, but in
another sense, suggestive of very different moods). Even though a reader
will prefer some techniques over alternative ones, it is important at least
that he should be aware of all the possibilities.

New York SERGE LaNG
June 1970



Prerequisites

Chapters I through VII are self-contained, assuming only elementary
algebra, say at the level of Galois theory. .

Some of the chapters on analytic number theory assume some analysis.
Chapter X1V assumes Fourier analysis on locally compact gr.aps. Chap-
ters XV through XVII assume only standard analytical facts (we even
prove some of them), except for one allusion to the Plancherel formula in
Chapter X VII.

In the course of the Brauer-Siegel theorem, we use the conductor-
discriminant formula, for which we refer to Artin-Tate where a detailed
proof is given. At that point, the use of this theorem is highly technical,
and is due to the fact that one does not know that the zeros of the zeta
function don’t occur in a small interval to the left of 1. If one knew this,
the proof would become only a page long, and the L-series would not be
needed at all. We give Siegel’s original proof for that in Chapter XIII.

My Algebra gives more than enough background for the present book.
In fact, Algebra already contains a good part of the theory of integral
extensions, and valuation theory, redone here in Chapters I and II.
Furthermore, Algebra also contains whatever will be needed of group
representation theory, used in a couple of isolated instances for applica-
tions of the class field theory, or to the Brauer-Siegel theorem.

The word ring will always mean commutative ring without zero d1v1sors
and with unit element (unless otherwise specified).

If K is a field, then K* denotes its multiplicative group, and K its
algebraic closure. Occasionally, a bar is also used to denote reduction
modulo & prime ideal. )

We use the o0 and O notation. If f, g are two functions of a real variable,
and ¢ is always 2 0, we write f = O(g) if there exists a constant C > 0
such that |f(z)| < Cg(z) for all sufficiently large z. We write f = o(g) if
lim;_, f(z)/g(z) = 0. We write f ~ g if lim,_,. f(z)/g(z) =
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CHAPTER 1

Algebraic Integers

This chapter describes the basic aspects of the ring of algebraic integers
in a number field (always assumed to be of finite degree over the rational
numbers Q). This includes the general prime ideal structure.

Some proofs are given in a more general context, but only when they
could not be made shorter by specializing the hypothesis to the concrete
situation we have in mind. It is not our intention to write a treatise on
commutative algebra.

§1. Localization

Let A be a ring. By a multiplicative subset of A we mean a subset
containing 1 and such that, whenever two elements z, y lie in the subset,
then so does the product xy. We shall also assume throughout that 0 does
not lie in the subset.

Let K be the quotient field of A, and let S be a multlphcatlve subset
of A. By S~14 we shall denote the set of quotients z/s with z in A and
sin 8. Itis aring, and A has a canonical inclusion in S™!A4.

If M is an A-module contained in some field L (containing K), then
S™!M denotes the set of elements v/s withv € M and s € S. Then S™'M
is an S7!A-module in the obvious way. We shall sometimes consider
the case when M is a ring containing A as subring.

Let p be a prime ideal of A (by definition, p ¢ A). Then the comple-
ment of p in 4, denoted by A — p, is a multiplicative subset S = S, of 4,
and we shall denote S™'A by A,.

A local ring is a ring which has a unique maximal ideal. If o is such a
ring, and m its maximal ideal, then any element z of o not lying in m
must be a unit, because otherwise, the principal ideal zo would be con-
tained in a maximal ideal unequal to m. Thus m is the set of non-units
of o. i

3 .



4 ALGEBRAIC INTEGERS (I, §2]

The ring A, defined above is a local ring. As can be verified at once,
-its maximal ideal m, consists of the quotients z/s, with z inp and sin 4
but not in p.

We observe that my; N 4 = p. The inclusion D is clear. Conversely,
if an elementy = z/sliesinm, N A withz €pandse€ S, thenz = sy €p
and s € p. Hencey € .

Let A be a ring and S a multiplicative subset. Let a’ be an ideal of
S~!'A. Then

o = S Ya' n A).

The inclusion D is clear. Conversely, let z €a’. Write z = a/s with
some a € A and s€ S. Then sz €a’ N A4, whence z € S™'(a’ N A).

Under multiplication by S™!, the multiplicative system of ideals of A
is mapped homomorphically onto the multiplicative system of ideals of
S~'A. This is another way of stating what we have just proved. If a
is an ideal of A and §™'a is the unit ideal, then it is clear that a N S is
not empty, or as we shall also say, a meets S.

82. Integral closure

Let A be a ring and z an element of some field L containing 4. We
shall say that z is integral over A if either one of the following conditions
is satisfied.

INT 1. There exists a finitely generated non-zero A-module M C L such
thatzM C M.

INT 2. The element z satisfies an equation

"+, g2 b f =0

with coefficients a; € A, and an integer n = 1. (Such an equation
will be called an integral equation.)
The two concﬂions are actually equivalent. Indeed, assume INT 2.
The module M generatec by 1, z, ..., 2"~ is mapped into itself by the
~ element r. Conversely, assume there exists M = (vy, . . ., v,) such that
M CM,and M # 0. Then

Uy = @11y + -+ Gl
IV = An1V) + * * * + Anala

+ with coefficients a;; in A. Transposing zv,, . . ., zv, to the right-hand side



{1, $2} INTEGRAL CLOSURE 5
of these equations, we eonclude that the determinant
T — a1y
T — Q22
—aij .
r — a”n
is equal to 0. In this way we get an integral equation for z over A.

Proposition 1. Let A be a ring, K its quotient field, and z algebraic over
K. Then there exists an element ¢ ¥ 0 of A such that cx is integral over A.

Proof. There exists an equation
ax" 4 -+a=0
with a; € A and a, » 0. Multiply it by a»~!. Then
(@n2)* + - +apan™' =0

is an integral equatio’ . for a,z over A.

Let B be a ring containing A. We shall say that B is integral over A
if every element of B is integral over A.

Proposition 2. If B 1is integral over A and finitely generated as an
A-algebra, then B 18 a finitoly generated A-module.

Proof. We may prove this by induction on the number of ring gen-
erators, and thus we may assume that B = A[z] for some element z inte-
gral over A. But we have already seen that our assertion is true in that
case.

Proposition 3. Let A C B CC be three rings. If B is integral over A
and C 18 integral over B, then C s integral over A.

Proof. Let z €C. Then z satisfies an integral equation
2"+ bp 2 4 by =0

with b; € B. Let By = Alb, ..., bs_;]. Then B, is » finitely generated
A-module by Proposition 2, and B,[z] is a finitely generated B;-module,”
whence a finitely generated A-module. Since multiplication by z maps
B,[z] into itself, it follows that z is integral over A.

Proposition 4. Let A C B be two rings, and B integral over A. Let ¢
be a homomorphism of B. Then o(B) is integral over o(A).



6 ALGEBRAIC INTEGERS ' {1, §2]

_Proof. Appiy o to an integral equation satisfied by any element z of B.
It will be an integral equation for o(z) over o(4).

The above proposition is used frequentiy when ¢ is an isomorphism
and is particularly useful in Galois theory.

Proposition 5. Let A be a ring contained in a field L. Let B be the sel
of elements of L which are integral over A. Then B 1s a ring, called the
integral closure of A mn L. ~

Proof. Let z, y lie in B, and let A1, N be two finitely generated A-
modules such that zAf C M and yN C N. Then MN is finitely generated,
and is mapped into itself by multiplication with z + y and zy.

Corollary. Let A be a ring, K its quotient field, and L a finite separable
extension of K. Let x be an element of L which s integral over A. Then
the norm and trace of = from L to K are integral over A, and so are the
coefficients of the irreducible polynomial satisfied by z over K.

Proof. For each isomorphism ¢ of L over K, oz is integral over A.
Since the norm is the product of oz over all such ¢, and the trace is the
sum of oz over all such g, it follows that they are integral over 4. Simi-
larly, the coefficients of the irreducible polynomial are obtained from the
elementary symmetric functions of the oz, and are therefore integral
over A. 7

A ring A is said to be integralljr closéd in a field L if every element
of L which is integral over A in fact lies in A. It is said to be
integrally closed if it is integrally closed in its quotient field.

Proposition 6. Let A be a Noetherian ring, integrally closed. Let L be
a finite separable extension of its quotient field K. Then the integral closure
of A in L s finitely generated over A.

Proof. 1t will suffice to show that the integral closure of A is contained
in a finitely generated .4-module, because A is assumed to be Noetherian.

Let w;, ..., w, be a linear basis of L over K. After multiplying each
w; by a suitable element of 4, we may assume without loss of generality
that the i; are integral over A (Proposition 1). The trace Tr from L to
K is a K-linear map of L into K, and is non-degenerate (i.e, there exists
an element r € L such that Tr(x) # 0). If a is a non-zero element of L,
then the function Tr(ex) on L is an element of the dual space of L (as
K-vector space), and induces a homomorphism of L into its dual space.
Since the kernel is trivial, it follows that L is isomorphie to its dual under
the bilinear form

(x, y) — Trley).

Al
1o e paid
1



i, §2 INTEGRAL CLOSURE 7

Let wy, . .., w; be the dual basis of wy, . .., wy, so that

Tr(wiw;) = &;.

Let ¢ # 0 be an element of A such that cw} is integral over A. Let z be
in L, integral over A. Then zcw; is integral over A, and so is Tr(czw;)
for each 7. If we write

z=$1101+"’+bnwn

with coefficients b; € K, then
Tr(czw;) = cby,
and cb; € A because A is integrally closed. Hence z is contained in
Ac Ywy + -+ + Ac 'wn.

Since z was selected arbitrarily in the integral closure of A4 in L, it follows
that this integral closure is contained in a finitely generated A-module,
and our proof is finished.

Proposition 7. If A is a unique factorization domain, then A is inte-
grally closed.

Proof. Suppose that there exists a quotient a/b with a, b € A which is
integral over A, and a prime element p in A which divides b but not a.
We have, for some integer n = 1,

@/b)* + an_1(@/b)* ' 4 - Fag = 0,
whence ’

a” ‘+‘ a,,_lba"”’ + see 4 aob" = 0.
Since p divides b, it must divide a”, and hence must divide a, contradietion.

Theorem 1. Let A be a principal ideal ring, and L a finite separable
extension of its quotient field, of degree n. Let B be the integral closure of
Ain L. Then B is a free module of rank n over A.

~ Proof. As a module over A, the integral closure is torsion-free, and by

the general theory of principal ideal rings, any torsion-free finitely gen-
erated module is in fact a free module. It is obvious that the rank is
equal to the degree [L: K].

Theorem 1 is applied to the ring of ordinary integers Z. A finite exten-
sion of the rational numbers Q is called 2 number field. The integral
closure of Z in a number field K is called the ring of algebraic integers of
that field, and is denoted by ox.



