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Preface

CoNTRoL theory is a branch of applied mathematics devoted to analysis and
design of control systems. Control systems are systems in which a controller
interacts with a real process in order to influence its behaviour. A primary
objective for most control systems is to make some real variable take a desired
value, for example to regulate the temperature of an oven or to make the
direction of a receiving aerial track a moving target. The objective is usually
to be achieved by adjusting some other variable, such as heat input to the
oven or force applied to the aerial, although the response to such adjustments
in most real controlled processes is neither instantaneous nor certain. The
non-instantaneous response is accounted for by regarding the controlling and
controlled variables as input and output of a dynamic system described by
differential or difference equations. The effect of uncertainties is reduced by
using feedback to provide the controller with continuous indication of what
adjustment is needed; for example, if the oven is too cold more heat must be
supplied and if the aerial points to the left of its target it must be forced to turn
to the right. Feedback is a characteristic feature of control systems: in addition
to reducing the effects of uncertainties it modifies the dynamic behaviour
of controlled processes and can cause instability. The main preoccupations of
control theory are with analysis of system dynamics and with applications of
probability theory to describe the behaviour of dynamic systems in the pres-
ence of uncertainty. Control theory is similar to other branches of applied
mathematics in that the majority of solved theoretical problems are linear and
the majority of real control systems non-linear. Techniques for applying the
theoretical results to specific practical problems are beyond the scope of the
theory.

Control theory originally developed as a branch of engineering science, but
subsequently found applications elsewhere; for example in economics, in
studies of social systems, and in biology.t Its development has passed through
three stages.

1 Most of the books about control in the Bibliography have an introductory chapter on
engineering applications of control theory. Applications to economic systems are
described in Tustin (1953). Allen (1968), IFAC IFORS (1973); to social systems in
Forrester (1961, 1968, 1971) and to biological systems in Bayliss (1966), Milsum (1966),
Milhorn (1966), Stark (1968), McFarland (1971).
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(1) A classical stage originating with a study by Maxwell (1868) of speed-
control systems and culminating during the second world war in designs of
gunnery, radar, and other military control systems. In this stage classical
analysis of ordinary linear differential equations was interpreted for and
applied to control systems.

(i) A more modern stage during the 1950s and 1960s when the attention of
applied mathematicians was directed to aerospace and to complex industrial
problems. In this stage multi-variable optimization methods were developed
and applied under the influence of the contemporary development of digital
computers.

(ii1) The most recent stage which emphasizes the importance of uncertainty,
almost completely neglected at earlier stages. In this stage control systems are
regarded as stochastic systems and probability theory is applied.

The history of control theory is reflected in the existing range of books on
the subject. There are many books about the classical theory of stage (i), often
written by engineers for engineers and with emphasis on engineering applica-
tions. There are books about the more modern theory of stage (ii), often
written with emphasis on mathematical rigour and on computational feasi-
bility. There are a few books about the recent stochastic control theory of
stage (iii}, mainly restricted to linear systems. Books covering all three stages
are still rare.

The purpose of this book is to provide an introduction to the main results
from all three stages of control theory and to unify them in a single volume at a
mathematical level suitable for final year undergraduates in engineering and
for graduates.t The material is presented without much reference to specific
applications and the book is not intended only for engineers. It is suitable for
anyone whose mathematical background includes the classical solution of
ordinary linear differential or difference equations and the elements of proba-
bility theory, which are reviewed in Chapters 1 and 12 respectively, complex
numbers and matrix algebra, which are used without any special explanation,
and a certain confidence in manipulating mathematical expressions.

The book is divided into three parts on a mathematical, rather than histori-
cal, basis.

Part I Deterministic linear systems described by equations having analytic
solutions.

Part II' Deterministic non-linear systems described by equations without
analytic solutions.

* The book is in some of these respects similar to certain other recent books: Takahashi,
Rabins, and Auslander (1970) covers a similar wide range of topics from all three stages
but with less emphasis on theory: Anderson and Moore (1971) is written at a similar
mathematical level and discusses modern control theory from stage (ii); Kwakernaak and
Sivan (1972) unifies the theory of linear systems from all three stages.
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Part 111 Systems with uncertainty, described with the help of probability
theory.

This framework leads to several unconventional features in presentation.

(i) The uniform treatment of both continuous-time and discrete-time sys-
tems in the chapters of Part I about classical control theory. For example the
z-transform precedes the Laplace transform in the presentation of Section 1.4
because the =-transform is mathematically simpler.

(ii) Chapter 9 on optimal control theory precedes the material on phase-
plane analysis in Chapter 10 in order that it shall immediately follow the pre-
sentation of optimal linear control theory in Chapter 8 at the end of Part L.

(iii) Chapter 12 is an introduction to probability theory rather than to con-
trol theory. It is included as necessary background for Part 11 in the same
way that Chapter [ provides necessary background on ordinary dynamic
equations for Part |.

Other features of the book are as follows.

(iv) Dynamic programming and Bayes's rule are emphasized as founda-
tions for optimal and stochastic control theory.

(v) Chapter 13 on stochastic control theory precedes and motivates the
introduction to estimation theory of Chapter 14. With this order of presenta-
tion the Kalman filter equations are used in Chapter 13 in advance of their
derivation in Chapter 14.

(vi) The discussion in Chapter 15 of the structure of stochastic controllers
has not previously appeared outside the research literature.

The book derives largely from lectures given to undergraduates in engineer-
ing science at the University of Edinburgh. the University of Oxford, and the
University of California, San Diego, and should be suitable for similar course
work elsewhere. Problems and their answers are provided for every chapter
except Chapter 15 which presents research material. Selected chapters might
be used for various courses, for example:

(1) Classical control theory

(Chapter 1 contains necessary background material.)

Chapters 2, 3. 4, 5.

(Chapter 10 and Section 11.3 optional.)

(it) Optimal control theory

(Chapter 6 provides a link with classical control theory.)

Chapters 7. 8. 9; or Chapters 7, 8; or Chapters 8, 9; or Chapter §.
(iii) Non-linear control theory

{(Classical control theory may be a necessary prerequisite.)
Chapters 10, 11.
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(iv) Stochastic control theory

(Chapter 12 contains necessary background material, Chapter 8 is a necessary
prerequisite.)

Chapters 13, 14,

(Chapter 15 optional.)

Each chapter ends with a bibliography indicating further or alternative read-
ing; the references are mainly to other books rather than to primary sources
and are inevitably incomplete.

The book also is inevitably incomplete. The theory of observers mentioned
at the end of Section 7.4, Popov’s method mentioned in Section 11.2, and re-
cent developments in the theory of linear multi-variable systemst might well
have been included. Power spectral density functions were not used in Section
12.6, in spite of their intuitive appeal, because they are not needed for the
derivation of any results. Practical applications, including computer realiza-
tions of control algorithms, were deliberately excluded in the belief that in-
sight into the main results of control theory can be achieved by concentrating
on the theory.

It is a pleasure to acknowledge the debts I have incurred in writing this
book. The debt to other authors is evident from the Bibliography. The stu-
dents who have attended my various courses and questioned what I told them
may not know how much I learned from them. David Clarke, David Hughes,
and David Witt read drafts of the book and made many helpful suggestions.
Most of all I am grateful to my wife Sheila who encouraged me to persevere
and who, together with our children, had to live with me while I did so.

t See MacFarlane (1973).
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1. Ordinary linear systems

1.1. Dynamic equations

MosT control systems are dynamic systems characterized by variables that
are functions of time. Such variables may be continuous-time variables, like
the temperature at some particular place, or discrete-time variables, like a
series of mid-day observations of temperature at the same place; Fig. 1.1
shows the difference between the two sorts of variable.

4 Continuous-time variable

|

‘ Time

Discrete-time variable

L L1011

Time

FiG. 1.1. Two sorts of function of time.

Dynamic systems are described for purposes of mathematical analysis by
dynamic equations; continuous-time systems by differential equations and
discrete-time systems by difference equations. A linear system is one that can
be described by a linear dynamic equation. If a linear system is single-
variabled, like that shown in Fig. 1.2, its dynamic equation would be either

Input Dynamic Output
————— M R e .
R system ¥

Fi1G. 1.2. Single-variabled dynamic system.



4 Deterministic linear systems 1.1

the continuous-time linear differential equation
dty dr1y dy dmx

— t+ 4, ——— ++ a— + Ay = by —— + -+ box, (1.1)
drr bdrt var O T O g °

where t represents time; or the discrete-time linear difference equation

an

a (i +n) +- -+ ay i+ 1) + agy(i) = bpx(i + m) + - -+ box(i), (1.2)
where i is an integer counting the discrete-time instants. When these equations
describe real physical systems the coefficients a,,, . . ., aq, by, . . ., b, are all real
and n, the order of the equation, is greater than or equal to m, the order of the
forcing function. This condition n > m reflects the fact that the system can-
not respond to an input before the input has been applied. In addition the
coefficients a,, . . ., aq, b, . . ., by are often constant although the equations
remain linear even when the coefficients vary with time.
Linear equations satisfy the principle of superposition, which states that

if input x,; causes output y, and input x, causes output y,,
then input x; + x, causes output y; + y,.

Figure 1.3 illustrates the principle for a continuous-time equation.

A ANt

Nyt X,

it

N N

FiG. 1.3. Superposition.

It follows from the principle of superposition that the complete solution to
a linear dynamic equation is the sum of two parts,

complete solution = particular integral + complementary function.
The particular integral, or ‘driven response’, is due to the input x, and the
complementary function, or ‘natural response’, follows from the initial con-

dition of the equation. In order to find the complete solution it is necessary
to know the form of the input function x and to know # initial conditions.
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The complementary function is found by setting the right-hand side of the
equation to zero and seeking solutions to the resulting homogeneous equation
in the general form

n
Yer = Z A, e
k=1
for continuous-time equations, or

Yer = Z Ay
k=1

for discrete-time equations; in both cases the A4, are constants determined by
the initial conditions and the s,, which may be complex numbers, are the
roots of the characteristic equation

s+ Ay S+ as + a, = 0. (1.3)
These roots of the characteristic equation determine the dynamic behaviour
of the equation.

The most important aspect of the dynamic behaviour is the stability of the
equation. A linear dynamic system is said to be ‘stable’ if its response to any
input tends to a finite steady value after the input is removed; this implies that
the complementary function must remain finite as time goes to infinity. It
follows that the condition for stability of a continuous-time system is that the
roots of the characteristic equation must all have negative real parts and that
the condition for stability of a discrete-time system is that the roots of the
characteristic equation must all have magnitude less than unity. Figure 1.4

Imaginary

Imaginary
N

Unstable
\\\

Real

7

Continuous-time Discrete-time

FiG. 1.4. Stability conditions on roots of the characteristic equation.

shows how these conditions can be interpreted on an Argand diagram, some-
times described as the *s-plane’, as regions where the roots must, or must not,
be for stability, or instability.
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Stability is discussed more fully in Chapter 3. Chapter 1 is devoted to
standard descriptions of the responses of ordinary linear dynamic equations.

Problem 1.1

1.2. Continuous-time responses

The typical, first-order differential equation

dy
T— +y=ux (1.4)
dt
has characteristic equation
Ts+1=0
and complementary function
Yor = AT
If the input x has the constant value x = X the particular integral is
Yoo =X
and if the initial condition is y(r = 0) = 0, the general solution is
y= X1 — et (1.5)

This solution is sketched in Fig. 1.5 which shows how the constant T deter-
mines the time scale of the response. T is called the ‘time constant’ of the
first-order equation. The time constant of an unknown first-order system can

v

| AL o '

1 L
T 2T 3T !

Fi1G. 1.5, Step response of first-order system.

easily be found from an experimental step response by noticing that the tan-
gent to the initial response intersects the final value (point 4 in Fig. 1.5) after
time T.
The typical, second-order differential equation is written
d’y dy
— 4 2 — 4+ w 2y = 2X. 1.6
472 Lovg dr 0y = Wy (1.6)

It has complementary function

Yor = Ay e @olEHviet-n)ty 4, g wolt-v@2-1)t,
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and when the input has the constant value x = X and the initial conditions
are p(r = 0) = dy/dt (1 = 0) = 0 the general solution is as sketched in
Fig. 1.6, which shows how the constant w, determines the time scale and the

¥
<=0, simple harmonic motion
J=0-25
) =112
«=05
| . [ _ o~ e R — -
o=1
(=2
1 1 1 Il -
1 2 3 4 5 64 ot
2n

Fic. 1.6. Step responses of second-order systems.

constant { determines the shape of the response. wy is called the *natural fre-
quency’ and is expressed in radians per unit time; { is called the ‘damping
ratio’ of the equation and is dimensionless. When { is less than unity the
response is oscillatory and the equation is said to be ‘under-damped’, when
is greater than unity there is no overshoot and the equation is said to be ‘over-
damped’, and when { is equal to unity the equation is said to be *critically
damped’.

The second-order equation can describe a position-control system where
the angular position y of a rotating load of inertia J is controlled by a motor
that applies torque u to the load. Figure 1.7 shows such a system in which the

Desired
position ‘ o Angular
X Controller Torque lR(;I(;tmg postition
o -
and motor ; N ;
u inertia J 4

Information about output

FiG. 1.7. Position-control system.

torque u is controlled by comparing information about the actual output y
with information about the desired output x. The differential equation of the
rotating load is given by Newton’s equation of motion

d?y

dr?



