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PREFACE

Despite the development of a now vast body of knowledge known as
modern control theory, and despite some spectacular applications of this
theory to practical situations, it is quite clear that much of the theory has
yet to find application, and many practical control problems have yet to find
a theory which will successfully deal with them. No book of course can

.remedy the situation at this time. But the aim of this book is to construct
one of many bridges that are still required for the student and practicing
control engineer between the familiar classical control results and those of
modern control theory. It attempts to do so by consistently adopting the
viewpoints that

1. many modern control results have interpretation in terms of clas-
sical control results;

2. many modern control results do have practical engineering signif-
icance, as distinct from applied mathematical significance.

As a consequence, linear systems are very heavily emphasized, and,
indeed, the discussion of nonlinear systems is essentially restricted to two
classes: systems which should be linear, but unhappily are not; and systems
which are linear but for the intentional use of relays. Also as a consequence
of this approach, discussion of some results deemed fundamental in the
general theory of optimal control has been kept to the barest minimum,
thereby allowing emphasis on those particular optimal control results having
application to linear systems. It may therefore seem strange to present a
book on optimal control which does not discuss the Pontryagin Maximum
Principle, but it is nonetheless consistent with the general aims of the book.

Although the selection of the material for the book has not been governed

vit
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by the idea of locating the optimal control theory of linear systems within
the broader framework of optimal control theory per s, it has been governed
by the aim of presenting results of linear optimal control theory interesting
from an engineering point of view, consistent with the ability of students to
follow the material. This has not meant restricting the choice of material
presented to that covered in other books; indeed a good many of the ideas
discussed have appeared only in technical papers.

For the most part, continuous time systems are treated, and a good
deal more of the discussion is on time-invariant than is on time-varying
systems. Infinite-time optimization problems for time-varying systems involve
concepts such as uniform complete controllability, which the authors con-
sider to be in the nature of advanced rather than core material, and accord-
ingly discussion of such material is kept to a minimum. For completeness,
some mention is also made of discrete-time systems, but it seemed to us
that any extended discussion of discrete-time systems would involve undue
repetition. . :

The text is aimed at the first or later year graduate student. The back-
ground assumed of any reader is, first, an elementary control course, covering
such notions as transfer functions, Nyquist plots, root locus, etc., second,
an elementary introduction to the state-space description of linear systems
and the dual notions of complete controllability and complete observability,
and third, an elementary introduction to linear algebra. However, exposure
to a prior or concurrent course in optimal control is not assumed. For
students who have had a prior course, or are taking concurrently a course
in the general theory of optimal control or a specific aspect of the discipline
such as time-optimal systems, a course based on this book will still provide
in-depth knowledge of an important area of optimal control.

Besides an introductory chapter and a final chapter on computational
aspects of optimal linear system design, the book contains three major parts.
The first of these outlines the basic theory of the linear regulator, for time-
invariant and time-varying systems, emphasizing the former. The actual
derivation of the optimal control law is via the Hamilton-Jacobi equation
which is introduced using the Principle of Optimality. The infinite-time
problem is considered, with the introduction of exponential weighting in
the performance irdex used for time-invariant design as a novel feature. The
second major part of the book outlines the engineering properties of the
regulator, and attempts to give the reader a feeling for the use of the optimal
linear regulator theory as a design tool. Degree of stability, phase and gain
margin, tolerance of time delay, effect of nonlinearities, introduction of
relays, design to achieve prescribed closed-loop poles, various sensitivity
problems, state estimation and design of practical controllers are all con-
sidered. The third major part of the book discusses extensions to the servo-
mechanism problem, to the situation where the derivative of the control
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may be limited (leading to dynamic feedback controllers) or the control
itself may be limited in amplitude (leading to feedback controllers con-
taining relays), and to recent results on output, as distinct from state
feedback. Material on discrete time systems and additional material on
time-varying continuous systems is also presented. The final part of the
book, consisting of one chapter only, discusses approaches to the solution
of Riccati equations, including approximate solution procedures based on
singular perturbation theory. Appendices summarizing matrix theory and
linear system theory results relevant to the material of the book are also
included.

Readers who have been introduced to the regulator problem elsewhere
may find section 3 of chapter 3 a convenient starting point, unless review
of the earlier material is required.

We would like to emphasize that the manuscript was compiled as a
truly joint effort; it would be difficult to disginguish completely who wrote
what section and whose ideas were involved at each point in the develop-
ment of the material. Both of us were surprised at the fact that working
together we could achieve far more than either of us working independently,
and we are thankful for the personal enrichment to our lives from the
experience of working together.

In listing acknowledgments, our former teachers Robert Newcomb
and Dragoslav Siljak come immediately to mind as do our graduate students
Peter Moylan and Konrad Hitz. In knowing these people each of us has
learned that a teacher-student relationship can be infinitely more worth-
while than the usual connotation of the words implies. We appreciate the
direct help given by our students as we also appreciate the work done by
Brian Thomas in drafting the various diagrams, and Sue Dorahy, Pam
O’Sullivan and Lorraine Youngberry for typing the manuscript. We are
happy to acknowledge the financial support of our research by the Australian
Research Grants Committee. We mention our families—Dianne and
Elizabeth Anderson, and Jan and Kevin Moore because they are a part of us.
We mention all these various names along with our own in recognition of
the world of people out of whom the world of ideas is born and for whom
it exists.

BRIAN D. O. ANDERSON
JoHN B. MOORE
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CHAPTER 1

INTRODUCTION

1.1 LINEAR OPTIMAL CONTROL

The methods and techniques of what is now known as “classical control”
will be familiar to most readers. In the main, the systems or plants that can
be considered by using classical control ideas are linear, time invariant, and
have a single input and a single output. The primary aim of the designer
using classical control design methods is to stabilize a plant, whereas secon-
dary aims may involve obtaining a certain transient response, bandwidth,
steady state error, and so on. The designer’s methods are a combination of
analytical ones (e.g., Laplace transform, Routh test), graphical ones (e.g.,
Nyquist plots, Nichols charts), and a good deal of empirically based knowl-
edge (e.g., a certain class of compensator works satisfactorily for a certain
class of plant). For high-order systems, multiple-input systems, or systems
that do not possess the properties usually assumed in the classical control
approach, the designer’s ingenuity is generally the limiting factor in achiev-
ing a satisfactory design.

Two of the main aims of modern, as opposed to classical, control are
to deempiricize control system design and to present solutions to a much
wider class of control problems than classical control can tackle. One of the
major ways modern control sets out to achieve these aims is by providing an
array of analytical design procedures that lessen the load of the design task

3



4 INTRODUCTION Ch. 1

on the designer’s ingenuity and locate more of the load upon his mathematical
ability and on the computational machines used in actually carrying out the
design.

Optimal control is one particular branch of modern control that sets
out to provide analytical designs of a specially appealing type. The system
which is the end result of an optimal design is not supposed merely to be
stable, have a certain bandwidth, or satisfy any one of the desirable con-
straints associated with classical control, but it is supposed to be the best
possible system of a particular type—hence, the word optimal. If it is both
optimal and possesses a number of the properties that classical control sug-
gests are desirable, so much the better. :

Linear-optimal control is a special sort of optimal control. The plant
that is controlled is assumed linear, and the controller, the device which
generates the optimal control, is constrained to be linear. That is, its output,
" the optimal control, is supposed to depend linearly on its input, which will
consist of quantities derived from measurements on the plant. Of course,
one may well ask: Why linear optimal control, as opposed simply to optimal
control? A number of justifications may be advanced—for example, many
engineering plants are linear prior to addition of a controller to them; a
linear controller is simple to implement physically, and will frequently suffice.

Other advantages of optimal control, when it is specifically linear,
follow.

1. Many optimal control problems do not have computable solutions,
or they have solutions that may only be obtained with a great deal
of computing effort. By contrast, nearly all linear optimal control
problems have readily computable solutions.

2. Linear optimal control results may be applied to nonlinear systems
operating on a small signal basis. More precisely, suppose an optimal
control has been developed for some nonlinear system with the
assumption that this system will start in a certain initial state. Sup-
pose, however, that the system starts in a slightly different initial
state, for which there exists some other optimal control. Then a
first approximation to the difference between the two optimal controls
may normally be derived, if desired, by solving a linear optimal
control problem (with all its attendant computational advantages).
This holds independently of the criterion for optimality for the non-
linear system. (Since this topic will not be discussed anywhere in this
book, we list the two references [1] and [2] that outline this important
result.t)

3. The computational procedures required for linear optimal design may
often be carried over to nonlinear optimal problems. For example,

tReferences are located at the end of each chapter.
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the nonlinear optimal design procedures based on the theory of the
second variation [1-3] and quasilinearization [3, 4] consist of com-
putational algorithms replacing the nonlinear problem by a sequence
of linear problems.

4. Linear optimal control designs turn out to possess a number of prop-
erties, other than simply optimality, which classical control suggests
are attractive. Examples of such properties are good gain margin
and phase margin, and good tolerance of nonlinearities. This latter
property suggests that controller design for nonlinear systems may
sometimes be achieved by designing with the gssumption that the sys-
tem is linear (even though this may not be a good approximation),
and by relying on the fact that an optimally designed linear system
can tolerate nonlinearities—actually quite large ones—without
impairment of all its desirable properties. Hence, linear optimal
design methods are in some ways applicable to nonlinear systems.

5. Linear optimal control provides a framework for the unified study
of the control problems studied via classical methods. At the same
time, it vastly extends the class of systems for which control designs
may be achieved.

1.2 ABOUT THIS BOOK IN PARTICULAR

This is not a book on optimal control, but a book on linear optimal
control. Accordingly, it reflects very little of the techniques or results of
general optimal control. Rather, we study a basic problem of linear optimal
control, the “regulator problem,” and attempt to relate mathematically all
other problems discussed to this one problem. If the reader masters the
mathematics of the regulator problem, he should find most of the remainder
of the mathematics relatively easy going. (Those familiar with the standard
regulator and its derivation may bypass Chapter 2, Sec. 2.1 through Chapter
3, Sec. 3.3. Those who wish to avoid the mathematics leading to regulator
results in a first reading may bypass Chapter 2, Sec. 2.2 through Chapter 3,
Sec. 3.3))

The fact that we attempt to set up mathematical relations between the
regulator problem and the other problems considered does not mean that
we seek, or should seek, physical or engineering relations between the regula-
tor problem and other problems. Indeed, these will not be there, and even
the initial mathematical statements of some problems will often not suggest
their association with the regulator problem.

We aim to analyze the engineering properties of the solution to the
problems presented. We thus note the various connections to classical con-
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trol results and ideas, which, in view of their empirical origins, are often best
for assessing a practical design, as distinct from arriving at this design.

1.3 PART AND CHAPTER OUTLINE

In this section, we briefly discuss the breakdown of the book into parts
and chapters. There are five parts, listed below with brief comments.

Part I—Introduction. This part is simply the introductory first chapter.

Part II—Basic theory of the optimal regulator. These chapters serve to
introduce the linear regulator problem and to set up the basic mathematical
results associated with it. Chapter 2 sets up the problem, by translating into
mathematical terms the physical requirements on a regulator. It introduces
the Hamilton-Jacobi equation as a device for solving optimal control prob-
lems, and then uses this equation to obtain a solution for problems where
performance over a finite (as opposed to infinite) time interval is of interest.
The infinite-time interval problem is considered in Chapter 3, which includes
stability properties of the optimal regulators. Chapter 4 shows how to achieve
a regulator design with a prescribed degree of stability.

Part III—Properties and application of the optimal regulator. The aim
of this part is twofold. First, it derives and discusses a number of engineering
properties of the linear optimal regulator, and, second, it discusses the
engineering implementation of the regulator. The main purpose of Chapter 5
is to derive some basic frequency domain formulas and to use these to deduce
from Nyquist plots properties of optimal systems involving gain margin,
etc. In this chapter, the ‘problem is also considered of designing optimal
systems with prescribed closed-loop poles. In Chapter 6, an examination is
made of the effect of introducing nonlinearities, including relays, into optimal
systems. The main point examined is the effect of the nonlinearities on the
system stability. Chapter 7 is mainly concerned with the effect of plant pa-
rameter variations in optimal systems, and studies the effect using modern
control ideas as well as the classical notion of the return difference. There is
also further discussion in Chapter 7 of the design of optimal systems with
prescribed closed-loop poles. Chapter 8 is devoted to the problem of state
estimation; implementation of optimal.control laws generally requires the
feeding back -of some function of the plant state vector, which may need
to be-estimated from the plant input and eutput if it is not directly measurable.
The discussions of Chapter 8 include estimators that operate optimally in
the presence of noise, the design of such estimators being achieved via solu-
tion of an optimal regulator problem. The purpose of Chapter 9 is to tie
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the estimation procedures of Chapter 8 with the optimal control results of
earlier chapters so as to achieve controllers of some engineering utility. Atten-
tion is paid to simplification of the structure of these controllers.

Part IV—Extensions to more complex problems. In this part, the aim
is to use the regulator results to solve a number of other linear optimal con-
trol problems of engineering interest. Chapter 10 considers problems resulting
in controllers using proportional-plus-integral state feedback. Chapter 11
considers various versions of the classical servomechanism problem. Chapter
12 considers problems when there is an upper bound on the magnitude of the
control; the controllers here become dual mode, with one mode—the linear
one—computable using the regulator theory. Next, Chapter 13 considers
problems where only the plant output is available for use in a nondynamic
controller, as well as other optimal problems that include controller con-
straints. Such problems are often referred to as suboptimal problems. Chapter
14 contains a very brief discussion of discrete time systems, and continuous
time-varying systems on an infinite-time interval.

Part V—Computational aspects. This part—Chapter 15—discusses
some of the computational difficulties involved in carrying out an optimal
control design. Various techniques are given for finding transient and steady
state solutions to an equation, the matrix Riccati equation, occurring con-
stantly in linear design. Approximate solutions are discussed, as well as a
description of situations in which these approximate solutions are applicable.

Appendices. Results in matrix theory and linear system theory relevant
to the material in the book are summarized in the appendices.
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