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Symbols and definitions

Listed below are some of the symbols frequently used in this book. All quantities are defined in SI units.

h Planck’s constant

h =h/2zn

¢ The speed of light in a vacuum

m, The rest mass of an electron

m, The mass of an electron with relativistic correction

e The absolute charge of an electron

kg Boltzmann's constant

U, The accelerating voltage of an electron microscope

A The electron wavelength in free space

P The momentum of an incident electron

K, The wavevector of an incident electron beam, K,=1/4
K The wavevector of a diffracted electron beam, K= 1/,
w Frequency

& The electron scattering semi-angle

5 The electron scattering factor of the ath atom

A The X-ray scattering factor of the ath atom

K The xth atom in a crystal

4

Sum over all atoms in crystal

> Sum over atoms within the unit cell

¥

FT Fourier transform from real space to reciprocal space

FT-! Inverse Fourier transform

r =(x,,2). A real-space vector

b =(x,y). A real-space vector

glor k) A reciprocal-lattice vector

u(or 1) A reciprocal-space vector

Vir) The electrostatic potential distribution in a crystal

V(u) =FT(¥(r)). The kinematic scattering amplitude of the crystal
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SYMBOLS AND DEFINITIONS

The electrostatic potential of the « th atom

The electron density distribution of the x th atom

The scattering vector, s=u/2, s=(sind)/~

Atomic number

The shape function of the crystal

The Fourier coefficient of the crystal potential

The Fourier transform of the xth atom in the unit cell
The Debye-~Waller factor of the ath atom

The volume of a unit cell

=r(=). The position of the ath atom within the unit cell
The position vector of the nth unit cell

Base vectors of the unit cell

Base vectors of the reciprocal lattice vector

The Bragg angle

The interplanar distance

Time

Convolution

The transfer function of the objective lens in reciprocal space
The shape function of the objective aperture in reciprocal space
The spherical aberration coefficient of the objective lens
The defocus of the objective lens

The focus shift introduced by chromatic aberration effects

The Schertzer defocus

The chromatic aberration coefficient of the objective lens
Electron energy loss

Basis vectors of the crystal lattice at the surface plane
Basis vectors of the surface lattice

Reciprocal-lattice vectors of the surface lattice

The surface potential

The number of surface unit cells

The number of surface islands

Step height

The width of a surface terrace

The configurational average over atom arrangements on a surface

Surface coverage
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SYMBOLS AND DEFINITIONS

Az
K,
[4

xvi

=1[1 —(vj¢)’]'*. The relativistic correction factor

=el[1 +elU,/(2myc)]. The energy of an incident electron

= E+ myc>. The total energy of an incident electron

= (2ymge/h)V (r), modified crystal potential

The Fourier coefficient of the modified potential U

The velocity of an incident electron

The electron wave function

The electron wave function excluding exp (2niK-¥) factor. @ (r)= ¥ (r)cxp(—2niK-r)
The ith branch Bloch wave

The wavevector of the ith Bloch wave

Superposition coefficients of Bloch waves

The position of an atom in the unit cell

The eigenvector of the ith Bloch wave

The eigenvalue of the ith Bloch wave

Excitation error

Two-beam extinction distance

The static displacement vector of atoms in an imperfect crystal

Burgcers vectors of dislocations

The thickness of a crystal slice

The component of a wavevector in the b plane

The beam’s incident angle with respect to the crystal surface

The beam’s deviation angle parallel to the surface with respect (o the zone axis
The propagation function of a slice with thickness Az

The phase grating function of a slice with thickness Az

The width of the incident beam in a perpendicular-to-surface multislice calculation
Green's function

Average crystal inner potential

Angular frequency

Electron kinetic energy

The electron refraction index at the crystal surface

The incident beam’s azimuth

The characteristic angle of inelastic scattering

The foreshortening factor
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SYMBOLS AND DEFINITIONS

The surface mis-cut angle

The rotation matrix

The phase jump at a surface step

The electron penetration depth into the surface

The coherence distance

Image resolution

=@/2, semi-angle of the objective aperture

Depth of field

Depth of focus

Thickness of crystal foil

Crystal states

Change in crystal wavevector

Mixed dynamic form factor

Reciprocal space vector

Charge density matrix

Mean-free-path length of inelastic electron scattering

= R(n). the position of the nth unit cell

The vibrational displacement of ath atom inside the nth unit cell
Equilibrium position of the atom in the unit cell

The time-dependent displacement vector of the x th atom

The mass of the «th atom in the unit cell

The polarization vector of the phonon mode

Creation operators of a phonon with wavevector ¢ and dispersion surface w,
The annihilation operator of a phonon with wavevector ¢ and dispersion surface «;
The time-dependent potential of the ath atom in the unit cell
The time-averaged atomic potential

=V =¥, perturbation of crystal potential due to atomic thermal vibration
The number of primitive cells in a crystal

The number of atoms in the primitive cell

The phonon frequency

The average occupation number of phonon state |n,>

The radius of the Brillouin zone

The volume of the Brillouin zone

Temperature

The Debye temperature
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SYMBOLS AND DEFINITIONS

(_1;f The mean square vibration amplitude of the «xth atom
v The phonon velocity

Sts(0.0") The scattering function in TDS

&(w,q) The dielectric function of a solid
&P
- The differential excitation probability of valence states
dzdw
& (w) The generalized diclectric function
q. The cut-off value of a wavevector
ON The resonance frequency of the volume plasmon
), The resonance frequency of the surface plasmon
n'z The average number of plasmons excited
E(r,1n) The electric field vector
B(r,1) The magnetic field vector
J(r, 1) The electron current density
p(r,1) The electron charge density
I The Hertz vector
H'(r) The interaction Hamiltonian
G0 The ionization cross-section of the nth state
g, The total ionization cross-section
T The electron single inelastic scattering function

J(R,E,—AE) The electron energy-loss distribution function

m, The average number of volume plasmons excited

m, The average number of surface plasmons excited

L, The average distance that an electron travels along the surface
A The inelastic mean free path length

a The angular integrated ionization cross-section

(o] Solid angle

R The Rydberg energy

ag The Bohr radius

B The collection semi-angle of an EELS spectrometer

A The energy width of an integration window

1y The atom concentration

Our The effective angular integrated ionization cross-section
iy The channeling current density at atom sites

n, The X-ray refraction index
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SYMBOLS AND DEFINITIONS

The critical angle for total external X-ray reflection

Sign conventions

Free-space plane wave exp(2niK-r—iwt)

Fourier transforms
real space to reciprocal space  f(u)= [drexp(—2niu-r)f(r)=FT[ f(r)].
reciprocal space to real space  f(r)=[duexp(2niu-r)f(u)=FT~'[ f(w)),

where the limis of integration are (— oc,o0) unless otherwise specified.
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Introduction

In 1986, E. Ruska was awarded the Nobel Physics Prize for his pioneering work of
building the world’s first transmission electron microscope (TEM) in the late 1920s.
The mechanism of TEM was originally based on the physical principle that a
charged particle could be focused by magnetic lenses, so that a ‘magnifier’ similar to
an optic microscope could be built. The discovery of wave properties of electrons
really revolutionized people’s understanding about the potential applications of a
TEM. In the last 60 years TEM has experienced a revolutionary development both
in theory and in electron optics, and has become one of the key research tools for
materials characterization (Hirsch ez al., 1977; Buseck er al., 1989). The point-to-
point image resolution currently available in TEM is better than 0.2 nm, which is
comparable to the interatomic distances in solids.

High-resolution TEM is one of the key techniques for real-space imaging of defect
structures in crystalline materials. Quantitative structure determination is becoming
feasible, particularly with the following technical advances. The installation of an
energy-filtering system on a TEM has made it possible to form images and
diffraction patterns using electrons with different energy losses. Accurate structure
analysis is possible using purely elastically scattered electrons, scattering of which
can be exactly simulated using the available theories. The traditional method of
recording images on film is being replaced by digital imaging with the use of a
charge-coupled device (CCD) camera, which has a large dynamical range with
single-electron detection sensitivity. Thus, electron diffraction patterns and images
can be recorded linearly in intensity, and a quantitative fitting is feasible between an
experimentally observed image and a theoretically simulated image. This is the
future direction of electron microscopy, which allows quantitative structure deter-
mination with an accuracy comparable to that of X-ray diffraction. A modern TEM
is a versatile machine, which can not only explore the crystal structure using imaging
and diffraction techniques but also can perform high-spatial resolution microanaly-
sis using energy-dispersive X-ray spectroscopy (EDS) and electron energy-loss
spectroscopy (EELS). Thus the chemical composition in a region of diameter
smaller than a few nanometers can be determined. Therefore, TEM is usually known
as high-resolution analytical electron microscopy, which is becoming an indispens-
able technique for materials research.

A wide variety of diffraction, spectroscopy, and microscopy techniques are now
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available for the characterization of thin films and surfaces; but only the microscope
methods, primarily those using electrons, are able to provide direct real-space
information about local inhomogeneities. Accompanying the extended applications
in materials science and thin crystal characterizations, TEM has been employed to
image the surface structure. There are several techniques, such as weak-beam dark-
field and surface profile imaging techniques (Cowley, 1986; Smith, 1987), that have
been devcloped for studying surface structures in TEM. This book is about
reflection high-energy electron diffraction (RHEED), reflection electron micros-
copy (REM), scanning REM (SREM) and the associated analytical techniques for
studying bulk crystal surfaces and surfaces deposited with thin films. Emphasis is
placed on real-space imaging of surface structures at high resolution. These
techniques can be applied to perform in situ studies of surfaces prepared in the
molecular beam epitaxy (MBE) chamber.

A surface is a special state of condensed matter, and it is the boundary between
materials and a vacuum. In the semiconductor device industry, for example,
techniques are needed to control surface structures in order to control some specific
transport properties. Epitaxial growth of thin films is becoming an indispensable
technique for synthesizing new materials, such as superconductor thin films,
semiconductor superlattices, metallic superlattices (or multilayers) and diamond
films, which have important applications in advanced technologies. Therefore,
surface characterization is an essential branch of materials science.

Techniques that have been applied to investigate surface structures are classified
into the following categories: surface crystallography, diffraction and imaging,
electron spectroscopy, incident ion techniques, desorption spectroscopy, tunneling
microscopy, work function techniques, atomic and molecular beam scattering, and
vibration spectroscopy. An introduction to these techniques has been given by
Woodruff and Delchar (1994). Table 0.1 compares various imaging and diffraction
techniques that have been developed for surface studies. Each of these techniques
has its unique advantages, and most of the techniques use an electron beam as the
probe. As limited by the physical mechanisms and the equipment designs, however,
most of these techniques may not be adequate to be applied for imaging in situ
surface phenomena. In this book, we introduce the reflection high-energy electron
diffraction (RHEED) and reflection electron microscopy and spectrometry tech-
niques, which can be applied to in sifu observations of thin film nucleation and
growth.

For surface studies it is rarely satisfactory to use only one technique. Information
regarding structure, composition and electronic structure is usually required in
order to accurately determine the surface structure. Therefore, imaging techniques
are usually applied in conjunction with other techniques that can provide surface-
sensitive chemical and electronic structures. The two most commonly used tech-
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niques are LEED and AES. LEED provides a simple and convenient characteriza-
tion of the surface crystallography whereas AES provides some indication of
chemical composition. Table 0.2 gives a summary of the diffraction and analytical
techniques that have been widely used for surface studies.

0.1 Historical background
The reflection electron imaging technique was first devised by Ruska (1933) shortly
after the invention of TEM. This development was initiated in order to exceed the
resolution limit of surface imaging by optical microscopes. Reflection electron
microscopy has experienced an unsteady development (Fert and Saport, 1952;
Menter, 1953; Watanabe, 1957) due to competition from other surface imaging
techniques, such as scanning electron microscopy (SEM) and the replica technique
for TEM. Reflection electron microscopy was advanced by Halliday and Newman
(1960), who used Bragg-reflected beams in reflection high-energy electron diffrac-
tion (RHEED) patterns for REM imaging. In the 1970s, Cowley and colleagues
(Cowley and Hojlund Nielsen, 1975; Hojlund Nielsen and Cowley, 1976) renewed
the interest in REM with an emphasis on diffraction contrast, combining both real-
and reciprocal-space analyses. A resolution of about 2 nm was achieved for
directions parallel to the surface, exceeding the resolution limit of 10 nm for SEM at
that time. Since then, REM has experienced rapid development due to improvement
in techniques for preparing atomic flat surfaces and the introduction of ultra-high
vacuum (UHV) TEMs. Applications of REM have been expanded to various fields,
such as semiconductor surface reconstructions, and metal and ceramic surfaces, by
many research groups (Cowley, 1986 and 1987; Bleloch et al., 1987; Yagi, 1987; Hsu
etal., 1987, Hsuand Peng, 1987a; Yagi et al., 1992; Latyshev eral., 1992; Claverie et
al., 1992; Wang, 1993; Wang and Bentley, 1992; Uchida et al., 1992a, b). In recent
years, extensive theoretical calculations have been carried out to understand the
basic scattering processes of high-energy (10 keV to 1 MeV) electrons from crystal
surfaces in a RHEED geometry. Various other techniques, such as STM and
electron holography, have been developed and used in conjunction with REM, to
provide comprehensive characterization tools for surface studies. In addition, the
application of REM and RHEED for in siru examinations of MBE growth has
attracted much interest. The development of an energy-filtering system for TEM has
important implications for REM and RHEED. Before the invention of this
technology it was not possible to perform quantitative surface structure analysis,
because only elastically scattering processes can be accurately calculated using the
available theories.

Accompanying the rapid experimental progress in REM, analytical techniques,
such as reflection electron energy-loss spectroscopy (REELS), have been developed.



