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Preface |

The book deals mainly with three problems involving Gaussian stationary
processes. The first problem consists of clarifying the conditions for mutual
absolute continuity (equivalence) of probability distributions of a “random
process segment” and of finding effective formulas for densities of the equiva-
lent distributions. Our second problem is to describe the classes of spectral
measures corresponding in some sense to regular stationary processes (in par-

“ticular, satisfying the well-known “strong mixing condition”) as well as to
describe the subclasses associated with “mixing rate”. The third problem
involves estimation of an unknown mean value of a random process, this
random process being stationary except for its mean, i.e., it is the problem of
“distinguishing a signal from stationary noise”. Furthermore, we give here
auxiliary information (on distributions in Hilbert spaces, properties of sam-
ple functions, theorems on functions of a complex variable, etc.).

Since 1958 many mathematicians have studied the problem of equivalence
of various infinite-dimensional Gaussian distributions (detailed and sys-
tematic presentation of the basic results can be found, for instance, in [23]).
In this book we have considered Gaussian stationary processes and arrived,

- we believe, at rather definite solutions.

The second problem mentioned above is closely related with problems
involving ergodic theory of Gaussian dynamic systems as well as prediction
theory of stationary processes. From a probabilistic point of view, this prob-
lem involves the conditions for weak dependence of the “future” of the proc-
ess on its “past”. The employment of these conditions has resulted in a fruit-
ful theory of limit theorems for weakly dependent variables (see, for instance,
[14], [22]); the best known condition of this kind is obviously the so-called
condition of “strong mixing”. The problems arising in considering regularity
conditions reduce in the,case of Gaussian processes to a peculiar approxima-
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Preface

tioni problem related to linear spectral theory. The book contains the results
of investigations of this problem which helped solve it almost completely.

The problem of estimating the mean is perhaps the oldest and most widely
known in mathematical statistics. There are two approaches to the solution of
this problem: first, the best unbiased estimates can be constructed on the basis
of the spectral density of stationary noise; otherwise the least squares method
can be applied.

We suggest one common class of “pseudobest” estimates to include best
unbiased estimates as well as classical least squares estimates. For these
“pseudobest” estimates explicit expressions are given, consistency conditions
are found, asymptotic formulas are derived for the error correlation matrix,
and conditions for asymptotic effectiveness are defined. It should be men-
tioned that the results relevant to regularity conditions and the mean estima-
 tion are formillated in spectral terms and can automatically be carried over
(within the “linear theory™) to arbitrary wide-sense stationary processes.

Each chapter has its own numbering of formulas, theorems, etc. For ex-
ample, formula (4.21) means formula 21 of Section 4 of the same chapter
where the reference is made. For the convenience of the reader we provide
references to textbooks or reference books. The references are listed at the end
of the book.
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CHAPTER 1
Preliminaries

I.1 Gaussian Probability Distributions in a Euclidean Space

A probability distribution P in an n-dimensional vector space R” is said to
be Gaussian if the characteristic function

ou) = J;n €™ PP(dx), ueR"

(here (4, x) = Y u,x, ‘denotes the scalar product of vectors u = (uy, <y Up)
and x = (x;, ..., x,)) has the form '
| 1
P(u) = exp{i(u, a) — 7 By, u)}, ueR", (L.1)
- where a = (a,, ..., a,) € R" is the mean and B is a linear self-adjoint non-

negative definite operator called a correlation operator; the matnx {By;} de-
fining B is said to be a correlation matrix. In this case

(u,a) = | . (4, x)P(dx),
(Bu, ) = [ [ %) ~ (4 a)][(@, x) — (v, @)]P(d) (12)
u,ve R

The distribution P with mean value a and correlation operator B is con-
centrated in an m-dimensional hyperplane L of R" (m being the rank of the
correlation matrix), which can be expressed as

L=a+ BR"

(L being the totality of all vectors y € R" of the form y = a + Bx, x € R").

2



I Preliminaries

In fact,
P(R"L) = 0,

the distribution P being absolutely continuous with respect to Lebesgue
measure dy in the hyperplane L, so that

P = [, p(ndy, (13)

where the distribution density p(y), y € L, has the form

1 1
p(y) = WEXP{—E(B_I(Y‘— a),(y — a))}. | (1.4)

Here det B denotes the determinant of the matrix that prescribes the operator
B in the subspace R™ = BR", and B~ is the inverse on this subspace. '

1.2 Gaussian Random Functions with Prescribed
Probability Measure

Let (22, A, P) be a probability space, i.e., a measurable space of elements
€ Q with probability measure P on a g-algebra W of sets 4 < Q.

Any real measurable function & = &(w) on a space Q is said to be a random
variable. The totality-of random variables &(t) = &(w, t) (parameter ¢ runs.
through a set T) is said to be a random function of parameter t € T. The
random variables &(¢) themselves are said to be values of this random func-
tion & = &(t); for fixed w € Q the real function é(w, ") = &, t) of te T is
said to be a sample function or a trajectory of the random function & = &(t).

We shall consider anather space X of real functions x = x(t) of te T,
which includes all trajectories & = &(w, t), t € T, of the random function
& = &(t). (For instance, the space X = RT of all real functions x = x(t),t € T,
possesses this property.) Denote by B the minimal s-algebra of sets of X
. containing all cylinder sets of this space, i.e., sets of the form

[x(t),...,x(t)]el 2.1)

(the set indicated by (2.1) consists of the functions x = x(t) for which the
values [x(t,), ..., x(t,)] at the points ¢, ..., t, € T prescribe a vector that
belongs to a Borel set I' in an n-dimensional vector space R"). The mapping
& = &(w) under which each w € Q corresponds to a pertinent sample func-
tion &(w, ') = &(w, t) of t e T—an element of the space X—is a measurable
mapping in a probability space (2, U, P) onto a measurable space (X, Q).
The sets 4 € A of the form A = {£ € B}—the preimages of sets B € B under
the mapping ¢ = &(w, -) indicated—form (in the aggregate) a o-algebra. This
o-algebra U, is minimal among g-algebras of the sets containing all sets of
the form

[, ..., &)]el ' 22



1.2 Gaussian Random Functions with Prescribed Probability Measure

(the set indicated consists of the elements w € Q for which the values
[¢(w, t1), ..., &w, t,)] prescribe a vector belonging to a Borel set I' of an
n-dimensional vector space R"), or, in other words, the s-algebra %, is to .
be generated by values &(t), te T. Probability measure P, defined on a
o-algebra B by the relation

P(B)=P{¢{ecB}, BeB, 2.3)

is said to be a probability distribution of the random function ¢ = &(t) (on the
pertinent function space X).

We shall discuss next the question: When is the family of real variables
&(t) = &w, t) given on a space Q (parameter ¢ runs through a set T) a random
function with the given probability distribution P,? More precisely, when
~ does there exist probability measure P in the space Q related with the given

distribution P, by means of (2.3)? We assume in this case that the set &(Q)
of all sample functions &(w, -) = &(w, t) of t € T belongs to the space X.

It is readily seen that such a probability measure P exists if and only if the

set E(Q2) has a complete exterior measure, ie.,

Pe(B)=1 for B2 ¥Q) (24)

for any measurable set Be X.

In fact, if P, is the probability distribution of the random function ¢ =
&(r), for any set Be X in the complement of the set () the set {¢ e B} is
empty and ,

Re(B) = P{¢ ¢ B} =0.

On the other hand, for any sets B,, B, € B,such that {{ € B;} = {{ € B,},
the symmetric difference B, o B, = (B,\B,) U (B,\B,) is contained in the
complement of the set &(Q), and under the condition (2.4), P4«(B,  B,) =
P«(B) = P¢(B,). Hence the relation .

P{¢cB} =P (B, Be®B, (2.5)

defines the single-valued function P = P(4) on the g-algebra A, of all sets
of the form 4 = {¢ € B}, B B, generated by &(t), t € T. Obviously, P is a
probability measure and ¢ = £(t) is a random function on.a probablhty
space (2, U, P) with the given probability distribution P,.

The measure P on the s-algebra U, generated by the varlables Et),te T,

can be defined uniquely by finite-dimensional dlstnbutlons P..... tn Of
which each is a Borel measure on R* defined by '
) P, D) =P{[LCy), ... st)] €T } (2 6)
P, ... bemg the probability distribution of the random vector [é(tl)
C(t,,)] In fact,
P(4) = inf ) P(4,), 2.7
. k



1 Preliminaries

where the lowér bound is taken over all sets A, of the form (2.2), whose
union covers the set 4 € ¥. In particular, this fact refers to the probability
distribution P, on the corresponding function space X—it is the probability
measure on the o-algebra B generated by the given variables &(t) = &(x, 1)
on the space X, i.e, the variables of the form

Et,x)=x(t), xeX : (2.8)
(where the parameter ¢, fixed for each functional &(x, t) = x(t) of x € X, runs
through the set T).

Denote by I' x R"™™ the Borel set in an n-dimensional space of vectors
[x(ty), ..., x(t,)] such that [x(t;), ..., x(t; )] € I (I is a Borel set in an m-
dimensional subspace R™ = R") with the remaining coordinates x(t;) arbi-
trary. Finite-dimensional distributions are “compatible” in the sense that

LCXRTM=P, (D) (29)

.....

for all sets of the above type.
Let X = R” be the space of all real functions x = x(t), te T. According
"to a well-known theorem due to Kolmogorov,* any given family of distri-
butions P, . . prescribes a continuous additive function P (defined by
(2.6), where the vanables have t\WC\sxphcn form (2.8)), on the algebra of all
cylinder sets (2.1). This function extends uniquely to a probability measure
P on the o-algebra B. The random function ¢ = &(t) with. values &(t) =
&(x, t) in the probability space (X, B, P) has finite-dimensional distributions
coinciding with the initial compatible distributions P, |
Starting from probability distribution P = P, on the functlon space X,
under the condition (2.4) we cdn define (see (2.5)) a probability measure on
the correspondmg space Q.
The random functions & = &(1) and é &(¢) with values in the same space
are said to be equivalent if with probabl‘lgty one (for almost all w € Q)

Ho, ) = Eo, 1)

for each fixed t € T. Obviously, the finite-dimensional distributions of equiv-
alent random functions coincide. Taking an equivalent random function
¢ = () with the trajectories in any function space X, we can define (see
(2.3)) a probability measure in this space as well.

Random variables are said to be Gaussian if their finite-dimensional dis-
tributions are Gaussian. More precisely, (when we deal with a random
function ¢ = &(t) with parameter t € T under some parametrization), the
values (1) = &(w, t) and the function ¢ = &(). itself are said to be Gaussian
if all finite-dimensional distributions P, ... ., are Gaussian. Probability
measure P on a g-algebra ¥, generated by all £(t) is also said to be Gaussian.

Each of the finite-dimensional distributions P, ., of the Gaussian

.....

random function ¢ = &(t) has mean value [a(t,), . . ., a(t,)] and correlation
* See [10], p. 150. . - ’



1.3 Lemmas on the Convergence of Gaussian Variables

matrix {B(t;, t;)} where a(t), t € T, is the mean value of the function & = &(1),
and B(s, t), s, t € T, is its correlation function:*

a(t) = M&(),
B(s, t) = M[&(s) — a(9)}[&(t) — a(®)), s, teT.

Therefore, the Gaussian measure P on a s-algebra U can be defined uniquely
by means of its mean value a(t), t € T, and its correlation function B(s, t),
s,teT. ]

The mean value a(t), t € T, can be arbitrary, and the correlation function
B(s, t), s, t € T, need only satisfy the positive definiteness condition

(2.10)

Z cxCiB(ty, t;) = 0 (2.11)
Ki=1

foranyty,...,t,e Tandrealc,,...,c,.

For any function a(t), t € T, and a positive definite correlation function
B(s,1), s, t € T, there exists a Gaussian random function with the mean a(),
te T, and a correlation function B(s, t), s, t € T. Actually, Gaussian distri-
butions P, , with the mean [a(t,), ..., a(t,)] and correlation matrices
{B(ts, t;)} are companble distributions, and define a Gaussian measure P in
the space X = R” of all real functions x = x(t) of t € T, on the g-algebra
B = A, which can be generated by the given values &(t) = &(x, t) on X of
the form (2.8) (parameter ¢ runs through the set T).

I.3 Lemmas on the Convergence of Gaussian Variables ~

Let {, =¢{,(w),n=1,2,..., be a sequence of random variables on a prob-
ability space (Q, U, P). The sequence &,,n=1,2, ..., is said to be conver-
gent in probability on a set A € A to some variable ¢ = &(w) if for any ¢ > 0

-

lim P({|¢, — &| > e} N 4) = 0. ‘ (3.1)

Let us recall that a sequence &, n = 1.2, . , converges in probability
if and only if this sequence is Cauchy,' i.e., on the same set A the sequence
Ay =&y — Emyn,m=1,2, ..., converges to zero in probability.

Lemma 1. If a sequence of Gaussian variables £,, n=1, 2,..., converges
in probability on a set A € W of positive measure (P(A) > 0), it is convergent
in the mean:

lim M[¢, - £)*=0. 3.2)

* M¢ denotes the expectation of a random variable £ = £(w) on a probability space (2, U, P):
M¢ = 5 Ew)P(dow).
t See, for example, [10], p. 90.



I Preliminaries

Proof. We shall consider Gaussian variables 4,,, = £, — &,. For any ¢ > 0

' 1 x—-amnz
P{|d,m| > &} = ZL Jone exp{—(——z—gz—)}dx,

where a,,, = M4,,,, 67, = P(4,,, — a.,)>. Suppose that the sequence ¢&,,
n=1,2,...,1s not convergent in the mean; this is equivalent to

im (a3, + oan) > 0.

n,m—>w
It can be easily seen that under this condition for a positive-¢ we have

T P{|dm] > e} > 1—p2,

n, m~ o

where p = P(A4) > 0. But then
lim P({|4,m > &} N 4) = p/2,

n,m—+x

which fact contradicts (3.1). Hence

lim M42, = lim (a2, + 02,) =0,

n, m— oo n, m=

i.e,, the sequence £,, n=1,2,..., is Cauchy (a fundamental) in the mean
and, therefore, is convergent in the mean.

In particular, if a sequence of Gaussian variables &,, n=1,2, ..., is
convergent with positive probability (i.e., convergent for all w from a set
A e U of positive measure), it is convergent in the mean. O

Let us consider a sequence of independent Gaussian variables &,, n =
1,2,....

Lemma 2. The series Y =, &2 is convergent with positive probability if and
only-if the series Y 2y MEZ is convergent.

Proof. Obviously,
Y M&E=M Y &
n=1 n=1

and hence the convergence of the series ) 2, M2 implies that the variable

& =Y, EX(w) is finite for almost all w € Q, i.e., the series Y 22, &2 is con-
vergent with probability one. Let the series ) 2, &2 be convergent with
positive probability (by the well-known zero—one law* this series is con-
vergent with probability one as well). Then the sequence &,, n=1,2,...,
converges to 0 in the mean: MEZ — 0 for n — o (see Lemma 1). Let a, =

* See. for example, [10], p. 157.



1.4 Gaussian Varia* les in a Hilbert Space

ME,, 62 = M(¢, — a,)®. Then

. | .
az + a2 = M(&)* + J‘ x? exp{—(x @) }dx,
2no,

2
|xI>1 20}

where the random variables &, = £,(w) are defined as

(&) for gl <1
@M—% for |£, > 1.

For a2 + g% - 0 we have

far ¥
1x]>1

- 7 2 .
\/2_ - exP{—&%} dx = o(a? + a?),
no, On

M(&)? ~ ag + oy,

By the well-known three-series theorem* a necessary condition for the
series Y ., &2 of independent variables £2, = 1,2, ..., to be convergent is
that Y2, M(&,)* < co. But M(&,)* ~ @} + o7, and, consequently, it follows
from the convergence of the series Y - ¢ &2 that 2, (@2 + 67) < 0. [

so that

1.4 Gaussian Variables in a Hilbert Space

A random variable ¢ in a Euclidean n-dimensional space R" is said to be
Gaussian if its probability distribution is Gaussian.

The random variable ¢ € R" is Gaussian if and only if the real variable
E(u) = (4, £) (equal to the scalar product of the elements u, £ € R"):is Gaussian
for each u e R".

In fact, the value at a point u € R" of the characteristic function ¢(u) of
the random variable & € R" coincides with the value of the characteristic
function of the real random variable &(u) = (u, £) at the point 1 and has
the form

. 1
e(u) = Me'™ % = exp{i(u, a) — 3 (Bu, u)}, ueR"

(see (1.1), where (u, a) is the mean and (By, u) is the variance of the Gaussian
variable é(u) = (4, £)).

It is clear that the random variable & € R” is Gaussian if and only if the
random function of the form &(u) = (u, &) of u € R” is Gaussian.

Let U be a complete separable Hilbert space and let £ = &(w) be a func-
" tion on a probability space (22, U, P) with the values in U. The random
element ¢ of a Hilbert space U is said to be a random variable in U if the
scalar product (u, ¢) for each ue U is a real random variable, ie, it is a
measurable function on the probability space (2, U, P).

* See, for example, [10], p. 166.



I Preliminaries

The random variable ¢ in a Hilbert space U is said to be Gaussian if the
real random variable &(u) = (4, £) is Gaussian for each u € U. This fact is
equivalent to the fact that the random function é(u) = (u, &) of ue U is
Gaussian since values &(u) = (u, £) as well as any vector values [¢(w,), .. .,
&(u,)] are Gaussian.

In fact, for any vector 4 = [4,, ..., 4;] in R" the scalar product 2 =1 Alluy)
is equal to :

Z Al(y) = ( Z Ay, C) =(u, &),
k=1 k=1

where u = Y% ; 4,u, € U; by hypothesis, the variable &(u) = (4, &) is Gaussian.
Obviously, the mean

a(u) = M(u, &), ue U,

of the random function &(u) = (u, &), u € U, is a linear functional, and the
correlation function :

B, v) = M[(4, §) — aW)][(» &) — a()], wvel,

is a bilinear positive functional on the Hilbert space U. In tHis case, since
the scalar product (u, £) is a continuous function of u e U for each fixed"
w € Q, a Gaussian function {(u) = (4, &) of u € U must be continuous in the
mean (see Lemma 1):

lim M[(u, H-@) = @1

[lu=vj| =
(||4|| denotes the norm of the elément u € U). But
M[(x, &) — (v, &))> = a(u — v)*> + B(u — v, u — v)

and (4.1) implies that the functionals a(u) and B(u, v) are continuous.
Being a linear continuous functional, the mean a(u) can be expressed as

a(u)=(u,a), ueU, - (42

for some element a in U. Any-element a € U having the property that
 a) = [, (u, E@)P(do) 43)

for all ue U is said to be the mean* of a random variable ¢ € U. Being a

continuous positive bilinear functional, the correlatlon functlon B(u, v) can
be expressed

B(u,v)=(Bu,v), -uvel, 4.4)

where B is a linear positive (i.e., nonnegative self-adjoint) operator in a
Hilbert space U called a correlation operator.
Let us show that the correlation operator B is completely continuous.

* For the integrability of functions with values in a Hilbert space, see, for example, [12], p. 59.

8



I.4 Gaussian Variables in a Hilbert Space

In fact, any orthonormalized sequence ¢y, v5, . . . goes to zero weakly, so
that the Gaussian variables &, = (v,, &), n=1,2,..., where ¢ = {(w)e U,
goes to zero as n— oo for all we Q. Therefore (see Lemma 1), they are
convergent in the mean, i.e.,

M¢3 = (B, v,) =0

(here and further on we assume for simplicity of notation that the mean
ae U is 0). If the operator B was not assumed completely continuous,
outside some e-neighborhood of zero there would be an infinite number of
spectral points (taking into account the multiplicity), and, therefore, an
infinite number of invariant orthogonal subspaces for each element of which

(Bu, u) = f

j21>e

Ad(E ;u, u) > ||u]|?,

where B = [AdE; is the spectral representation of the continuous self-
adjoint operator B.

Further, we shall choose a complete orthonormalized basis of eigen-

elements v,, v,, . .. of this completely continuous symmetric positive opera-
tor B corresponding to eigenvalues 6. 63, . . .. The corresponding variables
Ee=1{v, &), k= 1,2, ..., are uncorrelated: ‘

62 forj =k,

Meid = (Bo ) = {0 for j # k

In this case

; (o) = T (00 E@))* = [JE()|%
1

As is well known, uncorrelated Gaussian variables are independent and the
convergence of the series Y ¥ &Z(w) (for all w) implies the convergence of
the series ) ¥ M&Z (see Lemma 2). Consequently,

Y (B, v) =Y M&E =Y o} < oo,
1 1

1

ie., the correlation operator B is a nuclear operator:* for any orthonormal
system u,, u,,...,€ U, :

Y (Buy, u,) < . (4.5)
1

Therefore, if we have a Gaussian random variable ¢ € U, the random
function &(u) = (u, &) of parameter u € U has a mean of the form (4.2) and a
correlation function of the form (4.4) where the correlation operator B is a
nuclear operator on the Hilbert space U.

Next, let &u), u € U, be an arbitrary Gaussian random function with a
mean of the form (4.2) and a correlation function of the form (4.4). where B

* See, for example. [7], p. S5.

9



I Preliminaries

is a nuclear operator on the Hilbert space U. Then there exists an equivalent
random function &u), u € U, and a Gaussian random variable ¢ = &w) in
U such that

(w=we, wel. 46)

The variable £ € U indicated can be defined for almost all elementary
outcomes w by the formula

)= T Lo @)

where vy, v,, ... is the complete orthonormal system of eigenelements of
the nuclear operator B, and, by virtue of the relation

MY &o)*= ) B o)<
~ k=1 k=1
for independent Gaussian variables &(v,), £(v,), - . ., the series Z;‘; 1 &) is
convergent with probability one. In fact, &u), ue U, is a random linear
functional in the sense that with probability one

S(Ayuy + Ayuz) = A, &uy) + A28(uy)
for any real 4,, 4, and any elements u,, u, € U since, as we can easily verify,
M&(A 11y + Azuz) — 4,E(y) — A2€(2))* = 0.

Furthermore, the random functional &(u) is continuous in the mean (see
(4.1) and below), and, since

u=lim Y (u, v)v,

nsw k=1

we have

n—+wx

&u) = lim é<k}: (u, v)m) = lim ;Z (u, v)é(v)
=1 n—o k=1

(in the sense of convergence in the mean); at the same time with probability
one '
n

&) =lim ¥ <u, 5y 5(vk)vk)= lim Y (4 00Ew0),
k=1

n— o k=1 R k=1
so that we have the equality (4.6) with probability one for each value &(u)

of the primary random function &(u), u e U.
Thus, we have arrived at the following result.*

Theorem 1. The Gaussian functional &(u), ue U, on a Hilbert space U can
be represented by (4.6) if and only if the mean a(u), u € U, is a continuous

* A survey of results related to distributions in linear spaces can be found, for example, in
Yu. V. Prokhorov, “The method of characteristic functionals,” Proceedings of the 4th Berkeley
Sympostum, Vol. 2,1961, pp. 403-419, ’

10



