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Preface

t

A growing interest has becn devcioped over the past few years in probe

lems involving sisnals and systems that depend on more than 6q§ varias

ble. Thece.multidimensional signals and systems have bheexn studied in

relation to several modern engineering fields such as multidimensional

digital filtering, multivariable network realizability, multidimensio=-

nal system synthesis digital picture processing, seismic data process-
. k ?

ing, X-ray image enhancement, the enhancement and analysis of aerial

photographs for detectiqn,qt forest fires or crop damage, the analysis

of satellite weather photos, image deblurring, etc. Most of the major

results concerning the multidimensional signals and systems are deve-

loped for two-dimensional /2-D/ cases.

These results may be grouped as follows,

1e

24

4.

2-D gystems snd filtexs. The 2-D linear shift invariant systems
are described by a convolution of the inpvt and the unit impulse
response. Some of the problems already investigated refer to the
questions of recursibility, Qtability and limit cycles. -

2-D state-gpgce models. Based on the state-space description seve-
ral properties of 2-D systems such as controllability, observabi-
1ity, canonical forms, minimality, etc. have been investigated.

2-D image progessing. random flelds and space-time g;ocesaigg.

These problems have drawn considerable attention and have shown

great potential for practical applications sugh &8 X-ray image en-
hancement, image deblurring, weather predictiéal seismic data ana-
lysis, radar and sonar array processing, etc. )

2-D feedback design techniques. These problems refer to the gene~
ral area of developing feedback design techniques so that the clo-
sed-loop system has pre-assigned desirable characteristica. The ei-
genvalue assignment exact model-matching, transfer function facto-

rization, minimum eneigy control, cbservers have been considered



vi

in many papers. )
The main objective of this monograph is to present recent developmentis
in 2-D linear system theory.
The monograph is organised a3 follows,
Chapter 1 presents Roesser ‘s model, Attasi’s model and two Fornasini-
Marchesini ‘s models. The transition matrices for the models are defined
and the general response formulas are given.
The transfer function matrix, the realisation problem and the separabi-
11ty of transfer function matrices .ro‘ considered in Chapter 2.
v Different notions of the controllabity, Gbumbility and reachability
are described in Chapter 3. The minimum energy control of 2-D systems
is also comsidered.
Chapter 4 gives definitions and stability tests for 2-D systems descri-
bed by the transfer function matrices and the state equations.
The stabilisation problems are also considered. Some new methode concer-
ning eigenvalue assignment for 2-D and 3-D linear systems are given in
Chapter 5. The asymptotic and deadbeat observers, the exact model
matching and the decoupling are considered in Chapter 6.
Finally, Chapter 7 presents some new rgsulta concerning deadbeat control
and deadbeat servo problems.
An Appendix of basic definitions, theorems and computational algorithms
has been included for the sake of greater eompr‘eheneivenees.
Thé monograph is addressed to graduate atudenté specializing in control,
scientists and engineers engaged in control system research and develop-
ment and mathematicians interested in control problems.
I wish to thank dr B.Eichsteadt and dr M.Kocigcki for their valuable

remarks, suggestions and comments.
T.Kaczorek
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1 STATE-SPACE MODELS AND RESFONSE FORMULAE

1.1 STATE-SPACE MODELS OF TWO-DIMENSIONAL LINEAR SYSTEMS

Roesser ‘s model.

Roesser s model /RM/ is defined by the equations [13]

Br1e1,3/ RETRT 271,971 | B,

+ u/i, 1.1
X71,3417] LAy Ayll x/8,37 | =, i n-
11,3/ .
v/4:3/ = [y 'cz] R R AT (2,390) 1.2/

where i is an integer-valued vertical coordinate,
J i3 an integer-valued horizontal coordinate,

n

xh/i,J/ € R | is the horizontal state vector,
n )

xv/i;J/ eR? is the vertical state vector,

w/i,3/ € R* is the input vector,

y/i,3/ € R 1s the output vector,
A11,A12.A21,A22, B1, 82, C1, c2, D are real matrices of appro-~
priate dimensions.

Boundary conditions for /1.1/ are given by

¥2/0,3/, x¥/1,0/ for 1,) = 0,1,2,... /1.18/
Introducing the matrices and vectors
A, A B
Aal M 12' Ba 1' c-[c1 cz]'
byy Az B,
B/ist,3/ 71,3/
v ’ X = v y U= u/i, i/, vy = vy/i,3/
x'/1,3+41/ x'/1,3/

we can rewrite /1.1/ and /1.2/ in the form

x’s Ax ¢+ Bu /1'1’/
y = Cx + Du ' /1.2



Example 1.1

Consider the equation [12]
or/x v/ _ _ ALKt _ pyx,tf + UL/ /1.3/
9x at ‘

with initial and boundary conditions
T/x,0/ = £4/x/, T/0,t/ = £,/t/ /1.3a/

where T/xyt/ is an unknown function (usually the tenperature) at
x(space) € [O,xf] and t(time) G[O,oo], U/t/ is a given
force function and 11/x/, fz/t/ are given functions.
The equation /1.3/ describes some thermal processes, for example in
chemical rea:tors, heat exchangers and pipe furnaces /Fig. 1.1/.
Taking . ‘
T/1,3/ = T/iax,3at/, U/3/ = U/3at/,

T/x,t/ = T/i 1/ - T/i, i/ 2T/x,tf = T/i.3/ - T/i-1,0/
34 At Ix AXx

we can write /1.3/ in the form

T/i,3+1/ = a1T/i,j/ + aZT/i-1,j/ + bU/3/ J1.4/
where

ay =1 - 5% - aAt, a8, =8, b=at.
If we define

xB/1,3/ = T/1-1,3/ and x'/1,3/ = T/1,3/

then from /1.4/ we obtain the Roesser’s model

xPris1,i/7] | o |l <Pri,a/] |o
v - ) v +| v/y/ /1.5/
x /i, 3+1/ a, a, |l = /i,3/1 b
Example 1.2
Consider the equations
au(x,tg =L Qi[x,t( ’ ai[x.t( = C au[x.t( /1.6/
ox ot 2x ot .

which describe voltage u/x,t/ and current i/x,t/ at x(space) € [0,1]
and t(tine) e [o,”]in a long transmission line (Fig. 1.2},
The initial and boundary conditions are given by

u/x,0/ = U/x/, 1/%,0/ = 1/x/

. /1.6a/
¥, ufO,t/ = U1/tl, u/i,t/ = U2/t/
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The equations /1.6/ can be rewritten in the form

% u/x,t/ A% u/x,t/ 1.7
x| 1/x,t/ Al
where
0o 4
-
A=, /1.8/
T (o}
Lyt us define

[u/x.t/] [ﬁ/x,t/] ‘
- T{_ /1.9/
i/x,t/ i/x,t/
1 ——
Vic
L_ 4

Vic

is the matrix whose columns are the eigenvectors of /1.8/.
It is easy to check that

where

T w

u/x,t u/x,
3 u/x,t/ 3 u/x,t/ /1.10/
Bl 1/x,t/ i/x,t/
where
AaTaT -

o 3
Ao

To find the Roesser’s model for /1.10/ we can apply the procedure used
for /1.3/.

Example 1.3
Consider the Darboux equation [12] '

a—zm - a, M + 8y _a—ajllﬂ + 8, s/x,t/ + b £/x,t/ /1.11/
3x It 2t ox
with the initial and boundary conditions

8/%x,0/ = 31/x/. s/0,t/ = SZ/t/ /1.11a/
where 8/x,t/ is an unknown function at x(space) e[o,xf] and t(tine) e

€fo0,00], a,» 84, 8, and b are real coefficients, f/x,t/ is a given in-



put function and 31/x/, SZ/t/ are given functions.

The equation /1.11/ describes some linear processes ovf gas absorption,
water stream heating and air drying.
Let us define

r/x,t/ = L;f.’h.ﬂ - 8, 8/x,t/ 71.12/

Using /1.12/ we can transform /1.11/ into an equivalent system of first
order differential equations of the form

{xtL a; 8.8, +a, r/x,t/ b .
x 1, N t/x,t/ /1.13/
d8/x,t/ 1 a, 8/x,t/ 0

ot

From /1.12/ and /1.411a/ we have

S/t
r/0,t/ = 28{Xs¥/ -8, 8/0,t/ = 2/ _ 8, S,/t/ =
ot x =0
- R/t/ J1.16)
Taking

r/i,3/ = r/isx,jat/

Ir/x b =« rlAs Y < rfi )], 8[X [ ¥ 8/i,3+1/ - 8/1,3/
Ix AX t "

At

1

we obtain from /1.13/ the following Roesser’s model

r/i41,3/ 1+8,4x (a1azno)Ax r/i,3/ ]
- +

ax £/1,3/ /1.15/
8/1,3+1/ At 1 + ayatils/i,3/

with boundary conditions

r/0,3/ = R/3 At/ /1.15a/
3/1.0/ - 81/1 Ax/



Attasi’s model.
Attasi’s model /AM/ is defined by the equations [1, 2]

/141,541 = K X/i41,5/ + Kx/1,341/ - KR %/1,3/ + Bu/i, 3/ /1.16/
v/i,3/ = Tx/1,3/ with KX, = EK, (i,3) o) /1.17/

where i, j are integer-valued vertical and horizontal coordinates, re-
spectively,
X/i,3/ € R* is the local state vector at /i,J/,
u/i,j/ 8 R® is the input vector,
y/i,3/ € R! is the output vector,
I1, IZ’ B, T are real matrices of appropriate dimensions.

Boundary conditions for /1.16/ are given by

x/i,0/, %X/0,3/ for i,j = 0,1,2,... /1.17a/

Fornasini - Marchesini ‘s models.

4
The first Fornasini - Marchesini’s model /F-MMI/ is defined by the equa-
tions [h]

X/541,341/ = Ag%/1,3/ + AgX/i41,3/ + Ayx/1,3¢41/ + Bu/i,3/ /1.18/
y/1,3/ = C%/i,3/ (1,3 0) /1.19/

where i, J are integer-valued vertical and horizontal coordinates, re-
spectively,
x/i,3/ € R* 1is the local state vector at /i,3/,
u/i,3/ € R® 1is the input vector,
y/i,j/ € R® is the output vector,

- - - -

AO, A1, A2, B, C are real matrices of appropriate dimensions.

Boundary conditions for /1.18/ are given by

x/1,0/, %/0,3/ for 1,3 = 0,1,2,... /1.18a/,

The second Fornasini - Marchesini’s model /F-~MMII/ is defined by the
equations [3]

x/i+1,5+1/ = A1x/i,J+1/ + Azx/i+1,j/ + BO1u/1+1,3/ + B1ou/1,3+1/
. /4.20/



¥/1,3/ = Cx/1,3/ + Du/i,3/ (1,39 0) .21/
where i, } are integer-valued vertical and horizontal coordinates, re-
, Spectively,

x/i,3/ € R®  is the local state vector at /i,Jj/,
u/i,3/ 6 R* is the input vector,-
v/i,3/ € BY is the output vector,

A1, AZ' B10, 801, C, D are real matrices of appropriate dimen-
sions.

Boundary conditions for /1.20/ are given by
x/1,0/, x/0,3/ for i,j = 1,2,... /1.208/

1.2 TIONS BETWEEN THE MODELS

From comparison of /1.16/ and /1.18/ it follows that AM is a special
case of F-MMI for Ay = -K X, = -KK,.
Let us define

71,3/ = K/1,301) - A%/1,3/  and  xV/1,3/ = %/1,3/ -

Taking into account /1.18/ we can write

BI101,3/ = 18,30 + Ay 11,37 + Apx¥11,3/] + Buriif =

= szh/it:j/ + [;o*;231]xv/193/ + é‘-‘/j-nj/

and R
X'/1,3941/ = x°/1,3/ + Ax /1,31
Hence
xh/i+1 3/ R A +3 ; xh/i,J/ ﬁ
A T I e s
x'/1,341/ I, A, x'/1,3/ 0
and
R B Y,
vriar = (o €] :
x'/1,3/

Thus, F-MMI can be recasted in RM with



A11 A

. A12 - ; Ao#Azh },[‘ , [01 Cz]-[o E], D=0 /1.22/
n

22

It is easy to show that if A21- In' le-o and C1-0 then RM can al-

80 be recasted in F-MMI with

Ag = A1pmAqqhgps Ay = Aypy Ay = Ay s B=By, Cu=Ch.
In particular case AM can be recasted in RM with

A A X, O B B

1 M2] (R - ,[c1 02].[0 U],n,o
Ao A [ ®of [Bf [©
and 1f Ay w0, Ayy=I , Aj Ay, = AyoAy, , By=0 and Cuw0 th’
RM can also be recasted in AM with

-

I‘\-AZZ' IZ-A“"’ 3-31, t-cz.

It will be shown that RM is a perticular case of F-MMII.
Defining

B/1,3/

X/i,J/ Ld
x'/1,3/

we can write /1.1/ and /1.2/ in the form

0 o0 l\11 A12 0
x/i+1,3+1/ = x/i+1,3/ + x/i,3¢1/ + u/i+1,3/ +
Aaq Az 0. © B,

+ u/i, j+1/
(]
and

¥/1,3/ = [04 Cp|x/1,3/ + Du/L, /.

Thus, RM is a particular case of F-MMII with

0o o A, A 0 B
Az - ’ A1 -{11 12], 501 -[ ’ .B10 -[ 1], [+ -[C1 CZ]
A21 A22 o o BZ 0

/1.23)



Note that /1.18/ and /1.19/ can be written in the form

x/141,301/| |Ky 0 o x/141,35/ A, Ay Bl x/1,301/
x/i+1,3/ |= I, 0 Of|x/i+1,3-1/| + |0 o oflx/1,3/ | +
u/i+1,3/ 0 0 Olfusist,3-1/ 0 0 ojfusi,3/

0 (o]
+ |0 | u/is1,3/ +]|0 |u/i,je1/

I 0

x/1,3/
v/1,3/ = [c 0 o] x/1,3-1/].
u/i ’ J'1 /
Assuming the vector
x/1,3/

x/1,3/ = | x/1,3-1/
u/i,3=1/

as local state vector of F-MMII it is easy to see that /1.18/ and
/1.19/ can be rewritten in the form /1.20/ and /1.21/ .with

- -

Ay A, o

A, 0 0O B
Ay =1, 0 0|, A, =l0 0 of, By, =| 0|, Byy=]|0O],
000 0

0 0 I

C= [6 ) o], D= 0.

Therefore F-MM 1 can be embedded in F-MMII .

(¢

0

1.3 TRANSITION MATRIX AND GENERAL RESPONSE FORMULA FOR ROESSER 'S

MODEL

The following partial ordering is used for integer pairs

/m,k/&/i,3/ if and only if hi end kJ
/h,k/=/1,3/ if and only if h=i and k=J ;

/,x/</4,3/ Aif and only if " /b,k//1,3/ end

/b,k/ ¢ /1,3/ «
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The transition /state - transition/ matrix Ai'Jp for

A A n.Xn
Rk 12,Aneali /i=1,2/
Raq By
is defined as follows [13]:
1°© a90 . 1 /the identity matrix/

A A 0 o .
20 41,0 _ [ 1 M2l 0,1 )
o o Ay Ay

30 aled o aATe0a1=%3 | 2001 4003 gor  1,3/> 0,0/
42 abd 2o /the zero matrix/ for i{0 or j<O

From /1.25/ for j=0 we have

because A

A0 _ p1,0,1-1,0 40,1 ,4,-1 _ ,1,0,i-1,0
i,-1 . 0. From /1.26/ it follows that

i
ab0 . (A1) for 1a1,2,... :

In a similar way it can be proved that

S

Ao"‘j = (Ao'1)j for j = 1,2,...

By induction on /i,Jj/ we shall.show that

210,81, , 20,1,1,3-1 _ 4i-1,3,1,0 | ,i,3-1,0,1

For /i,j/=/0,0/ equation /1.25/ yields

A1,OA-1,O + AO,‘IA0,~-1 - A-1,O 1,0 , A0,-1A0,1

and for /I,J/=/1,O/o /193/-/011/

Thus /1.27¢/ is true for /i,3/=/0,0/, /i,3/=

In a similar way it can be proven true for /i,j/s= /10,1/ and /i,3/ =

41,0,0,0 | ,0,1,1,=1 _ ,0,0,1,0
-1,1

. A‘1,-1A0,1

0,1,0,0 _ 4=1,1,1,0 | ,0,0,0,1

a10 + A + 2000y

A

/1.24/

/1.25/

/1.26/

" 1.278/

/1.270/

/1.27¢/

/110/ .and /1,3/ = /0,1/.

./1,3’0/; io,j°> 1. Assuming that the hypothesis /1.27c/ is true for
all /k,1/ such that /0,0/(/k,ll ¢/i,3/ it will be shown that it is
valid for /i,J/.

A1,0(Ai-2;jA1,0 +_A1-1,3-1Ao,1) . A0,1(A1-1,3-1A1,o . Ai,j-2A0,1) -

Al=1,3,1,0 , 21,3-1,0,1

This completes the proof of /1.27c/.

’(A1,0A1-2,3 R A0,1Ai-1,j-1)A1,0 . (A1,0Ai-1,j-1 R A0,1A1,3-2)A9.1 -
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Theorem 1.1 [13]

A solution to the equation /1 1/ thh boundary conditions /1 1a/ is
given by

71,3/ fo J1Kq09] 0 ij RERS /0, ky/
+
xs1,3/] k=0 x'/ky,0/|  Ky=0 0
N i-k1—1,;j-k231 ',O+ Ai-k1,j-k2-1BO,1]u/k1’k2/
/0,040, k5/</1,3/ ‘
where /1.28/
B [ o
B0 | '}, 897 - \ /1.25a/
0 1B .

Proof: The proof is accomplished using induction on /i,j/.
For /1,3/ = /0,0/ . equation /1.1/ yields

71,0/ 2/0,0/] s, '

v = A v + . U/0,0/

x 0,1/} - |x /O,O/J B2 .
The same result follows from /1.28/. Thus the hypothesis is true for
/i,3/=2/0,0/. It is amatter of bookkeeping to show that the hy;_:gthesis
holds true also for /i,3/=/1,,0/, /0,3,/3 lo,jo) 0. Assugfng.that
the hypothesis is truw for all /k,,k,/ such that 10,0/ & f Ko/ X' 3/,

it will be shown that the hypothesis is valid for /i,3/ I /
From /1.1/ it follows that fas)
[ . h h,. h,, .
x/1,3/ x/i-1,3/ x /1i,5-1/
IR FYRTL] R I T I + BV YN, i/ + 1
| X /1,3/ x /i-1,3/ x /i,3-1/ .
8%+ Yu/1,3-1/ gy
Substituting the expressions for .
Bri-1,9/] [Eriis-1/ '
e P /which follow from /1.28//
| x /i-1,3/ x /i,3-1/
into /1.29/ we obtain
[ - ' s 4 s h
x2/1,3/ _ A1,0{ 1-1 [k o . Jihako|x 100051
x’/1,3/ k=0 - [x/kq,07) kom0 0

i-ky-2,3-%, 1, 0 i-k -1 J-k2—1 o, 1]
B +A u/k1,k2/

+ .
/000/‘/1‘1 ok2/</i’1 vJ



