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PREFACE

The theory of nonharmonic Fourier series is concerned with the complete-
ness and expansion properties of sets of complex exponentials {¢“~} in
LP[—n,n). Its origins, which are classical in spirit, lie in the celebrated works
of Paley and Wiener [1934] and Levinson [1940]. In recent years, in response
to the development of functional analysis and, in particular, to the growing
interest in bases in Banach spaces, research in the area has flourished. New
approaches to old problems have led to important advances in the theory.
4k This book is an account of both the classical and the modern theories.
Its underlying theme is the elegant interplay among the various parts of
analysis. The catalyst in the present case is the Fourier transform, through
which the classical Banach spaces are mapped into spaces of entire functions.
In this way, problems in one domain can be examined via their transform
image in the other.

The book is designed primarily for the graduate student or mathema-
tician who is approaching the subject for the first time. Its aim as such is
to provide a unified and self-contained introduction to a multifaceted field,
not an exhaustive account of all that is known. Accordingly, the first half
of the book presents an elementary introduction to the theory of bases in
Banach spaces and the theory of entire functions of exponential type. At the
same time, an extensive set of notes touches on more advanced topics, indi-
cates directions in which the theory can be extended, and should prove useful
to both specialists and nonspecialists alike. Much of the material appears
in book form for the first time.

The only prerequisites are a working knowledge of real and complex
analysis, together with the elements of functional analysis. By that I mean
roughly what is-contained in Rudin [1965). On occasion, when more ad-
vanced tools of analysis are required, appropriate references are given. Apart
from this, the work is essentially self-contained, and it can serve as a textbook
for a course at the second- or third-year graduate level.

The problems, which are of varying degrees of difficulty, are an integral
part of the text. Some are routine applications of the theory, while others
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are important ancillary results—these are usually accompanied by an indica-
tion of the solution and an appropriate reference to the literature.

A word about notation: Theorem 2.3 refers to Theorem 3 of Chapter 2.
The labeling of all other results is self-explanatory.

I am deeply indebted to Doug Dickson and Paul Muhly for their careful
reading of the manuscript and for their sharp criticism and advice. I owe
immeasurable thanks to Linda Miller, who proofread the entire book more
times than I could possibly have hoped.

ROBERT M. YOUNG
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1 BASES IN BANACH SPACES

1 Schauder Bases

Let X be an infinite-dimensional Banach space over the field of real or
complex numbers. When viewed as a vector space, X is known to possess a
Hamel basis—a linearly independent subset of X that spans the entire space.
Unfortunately, such bases cannot in general be constructed, their very
existence depending on the axiom of choice, and their usefulness is there-
fore severely limited. Of far greater importance and applicability in analysis
is the notion of a basis first introduced by Schauder [1927].

Definition. A4 sequence of vectors {x, x,, x3,...} in an infinite-dimen-
sional Banach space X is said to be a Schauder basis for X if to each vector x
in the space there corresponds a unique sequence of scalars {cy, ¢,, c5. ...}

such that '

a
X =) CuX,.
n=1

The convergence of the series is understood to be with respect to the strong
(norm) topology of X ; in other words,

Ix - Y x| >0 as n—oo.
i=1

Henceforth, the term basis for an infinite-dimensional Banach space will
always mean a Schauder basis.

_Exal!lple. The Banach space /7 (1 < p < «) consists, by definition, of all
infinite sequences of scalars ¢ = {¢,, ¢;, ¢;,...} such that |c||, =
(3= 1]eal)? < w. The vector operations are coordinatewise. In each

5506269



2 Bases in Banach Spaces [Ch. 1

of these spaces, the “natural basis” {e,, e,, €3, . . .}, where
e, =(0,0,...,0,1,0,...),

and the | appears in the nth position, is easily seen to be a Schauder basis. If
¢ = {c,} is in /?, then the obvious expansion ¢ = ) 2, c,e, is valid.

It is clear that a Banach space with a basis must be separable. Reason:
If {x,} is a basis for X, then the set of all finite linear combinations ) c,x,,
where the ¢, are rational scalars, is countable and dense in X. It follows, for
example, that since /® is not separable, it cannot possess a basis.

The *‘basis problem” —whether or not every separable Banach space has
a basis—was raised by Banach [1932] and remained until recently one of
the outstanding unsolved problems of functional analysis. The question was
finally settled by Per Enflo [1973]), who constructed an example of a sep-
arable Banach space having no basis. The negative answer to the basis
problem is perhaps surprising in light of the fact that bases are now known
for almost all the familiar examples of infinite-dimensional separable
Banach spaces.

Problems

1. Prove that every vector space has a Hamel basis.

2. Prove that every Hamel basis for a given vector space has the samé
number of elements. This number is called the (linear) dimension of
the space.

3. Show that a Hamel basis for an infinite-dimensional Banach space
is uncountable.

4. Show that the dimension of /® is equal to ¢. (Hint: Show that the
set {(1,r,7%,...) : 0 < r < 1} is linearly independent.)

5. Let X be an infinite-dimensional Banach space.

(a) Prove that dim X = c. (Hint: Show that there is a vector space
isomorphism between /® and a subspace of X.)
(b) Prove that if X is separable, then dim X = ¢.

6. The Banach space c, consists of all infinite sequences of scalars which
converge to zero (with the /* norm). Show that the natural basis is a
Schauder basis for ¢, .

7. Exhibit a Schauder basis for the Banach space ¢ consisting of all con-
vergent sequences of scalars (with the /® norm).

8. An infinite series ) x, in a Banach space X is said to be unconditionally
convergent if every arrangement of its terms converges to the same
element. It is said to be absolutely convergent if the series Y |x,| is

I S :

17,0 2
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Sec. 2]  Schauder’s Basis for C[a.b] 3

convergent. Show that every absolutely convergent series in X is uncon-

ditionally convergent. What about the converse?

9. A basis {x,} for a Banach space X is said to be unconditional (absolute)
if every convergent series of the form ) ¢,x, is unconditionally (abso-
lutely) convergent.

(a) Show that the natural basis is unconditional for the spaces /7,
I £ p < o, and ¢,. Show also that it is absolute for /? only
when p = 1. Is it absolute for ¢, ?

(b) Show that the sequence of vectors

(1,0,0,0,...), (1,1,0,0,...), (1,1,1,0,...),
forms a basis for ¢, which is not unconditional.

2 Schauder’s Basis for C[a, b]

One of the most important and widely studied classical Banach spaces
is C[a, b], the space of all continuous functions on the closed finite interval
[a, b], together with the norm

| f1 = max] £ (x)].

The celebrated Weierstrass approximation theorem asserts that the poly-
nomials are dense in C[a, b]: if f is continuous on [, b], then for every
positive number ¢ there is a polynomial P such that the inequality

[f(x) — P(x)| < ¢

holds throughout the interval [q, b].

For a given continuous function, a sequence of approximating poly-
nomials can even be given explicitly. The most elegant representation is
due to Bernstein. Let us suppose, for simplicity, that S is continuous on
the interval [0, 1]. Then the nth Bernstein polynomial for f is

Bx)= Y (:)fG)x*(l —xrh n=1,23,....

k=0
As is well known,

f(x) = lim B(x)

n—w

uniformly on [0, 1] (see Akhiezer [1956, p. 30]).



4 Bases in Banach Spaces [Ch. 1

Since every polynomial can be uniformly approximated on a closed
interval by a polynomial with rational coefficients, the preceding remarks
show that the space C[a, b] is separable; in fact, it has a basis.

Theorem 1 (Schauder). The space Cla, b] possesses a basis.

Proof. We are going to construct a basis for C[a, b] consisting of piece-
wise-linear functions f,(n = 0, 1,2,...). This means that to each function f
in the space there will correspond a unique sequence of scalars {c,} such that

@

fX) =3 ¢ folx)
n=0
uniformly on [a, b].
Let {x,, x;, x,,...} be a countable dense subset of [a, b] with x, = a
and x, = b. Set
x—a

b—-a

fox)=1 and  fi(x) =

When n 2 2, the set of points {x,, x,,..., x,_,} partitions [a, b] into
disjoint open intervals, one of which contains x,; call it I. Define

0 if x¢l
fix) =41 if X = X,
linear elsewhere

for n = 2, 3,4,.... The sequence { fo, f;, f3, ...} will be the required basis.

For each function f in C[a, b] and each positive integer n, we denote
by L,f the polygonal function that agrees with f at each of the points
Xg, X1, ..., X,; We denote by L,f the function whose constant value is
S(xo). Since f is uniformly continuous on [a,b], a simple continuity
argument shows that

L.f—>f uniformly on [a, b].
Therefore, we can write

f=Lof + i (Lnf = Lo-rf).

We are going to show that there are scalars ¢, , c,, c,, ... such that

Lnf - thlf = Cnfn (n = l’ 2’ 3"")'
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For this purpose, we shall define a sequence of functions {g¢, 91,93, ..}
recursively by the equations

gozf(xo)fo and In = Gn-1 +(f—gn-l)(xn)fn’ h = 1’2’3’-'-'

The claim is that g, = L, f, whence
Cn = (f - Ln—lf)(xn)'

Since g, is a polygonal function whose only possible corners are at the
points xo, X;, .. -, X,, it is sufficient to show that g, agrees with f at each
of these points. This is trivial for n = 0, and we proceed by induction.
Since f,(x,) = 1, it follows that g,(x,) = f(x,); if i <n, then f,(x;) =0,
and it follows from the definition of g,, together with the induction hy-
pothesis, that

gn(xi) = gn*l(xi) = f(xi)‘

This establishes the claim.

Accordingly, every function fe C[a,b] has at least one representation
of the form

f = icﬂfn,

and we have only to show that this representation is unique. Suppose then
that some function g has two different representations, say Yo oa,f, and
®_ob, f,. N is the smallest value of n for which a, # b, then

ac

Y afux) = 3 byfulx)
n=N

n=N

for every x. Choose x = xy. Since f,(xy} = 0 whenever n > N, it follows
that ay = by. But this contradicts the choice of N, and hence a, = b, for
every n. |

Problems

1. Give a probabilistic interpretation of the Bernstein polynomials (see
Feller {1966, Chap. VII})).



6 Bases in Banach Spaces [Ch. 1

2. Prove that the space Cla, b] is separable by showing that every con-
tinuous function on [a, b] can be uniformly approximated by poly-
nomials with rational coefficients.

3. Let f be a continuous function on (— o0, 00). Prove that if there is a
sequence of polynomials {P,, P,, P, . ..} such that P, — f uniformly
on (— o0, o0), then f must itself be a polynomial.

4. Let f be a continuous function on [a, b]. Show that there is a sequence
of polynomials {Py, P,, P,, . . .} such that f =3 =, P, and the series
converges absolutely and uniformly on [a, b].

3 Orthonormal Bases in Hilbert Space

In a separable Hilbert spacet, a distinguished role is played by those
Schauder bases that are orthonormal—the basis vectors are mutually per-
pendicular and each has unit length. An equivalent characterization of
such bases is that they are complete orthonormal sequences. (Recall that a
sequence of vectors { f, /5, f3, ...} in a Hilbert space is said to be com-
plete if the zero vector alone is perpendicular to every f,.) It follows readily
from this characterization that every separable Hilbert space has an
orthonormal basis.

The most important property of an orthonormal basis (as opposed to
any other basis) is the simplicity of all basis expansions. If {e,, e,, e5, ...}
is an orthonormal basis for a Hilbert space H, then for every element f e H
we have the Fourier expansion

f = i (/. een.

The inner product (f, e,) is called the nth Fourier coefficient of f (relative
to {e,}). When the Pythagorean formula is applied to this series, the result
is Parsevals identity:

11 = 2 [(f el

The validity of Parseval’s identity for every vector in the space is both
necessary and sufficient for an orthonormal sequence to be a basis.

t All Hilbert spaces are assumed to be infinite-dimensional.
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Since the linear transformation

S = A/, e}

from H into I* preserves norms, it must also preserve inner products. Thus

(f,9)= 3 (f eg )
n=1

for every pair of vectors f and g; this is the generalized Parseval identity.
Even if an orthonormal sequence {e,} is incomplete, Bessel’s inequality
is always valid:

S lfel s 1T

whenever f € H. This shows, in particular, that the Fourier coefficients of
each element of H form a square-summable sequence. The Riesz—Fischer
theorem shows, conversely, that every square-summable sequence is ob-
tained in this way: if 3 2, |c,|> < oo, then there exists an element f in H
for which

(fie)=c¢,, n=123...

The proof is trivial: simply choose f = Y2, »,e,. We conclude that if
{e,} is a complete orthonormal sequence in H, then the correspondence
S —{(f, e,)} between H and I* is a Hilbert space isomorphism. It follows
that from a geometric point of view, all separable Hilbert spaces are “indis-
tinguishable”, that is to say, isomorphic.

Example 1. In/? the “natural basis” is orthonormal.

Example 2. In L?[—n, ], with the inner product

T L p—
(ﬂm=£f1ﬂMMM

the complex trigonometric system {e™}®_ constitutes an orthonormal

basis. That the system is orthonormal is obvious; we prove that it is
complete.



8 Bases in Banach Spaces  [Ch. 1
Theorem 2. The trigonometric system is complete in L*[—m=, n].

Proof. The proof will establish even more. Suppose that

Jn fe ™dt=0

for some integrable function f defined on [—=,n}and n =0, +1, +£2,....
It is to be shown that f = 0 a.e. Set

gm=£fww

for t e [ —n, nr]. Integration by parts shows that

J.l (g) —c)e ™dt =0

for every constant c and n = +1, +2, +3,.... Choose ¢ so that this holds
for n = 0 also, and put

F(t) = g(t) — c.

Then F is continuous on [ —#, n] and F(n) = F(—n). Weierstrass’s theorem
on approximation by trigonometric polynomials guarantees that for each
£ > 0 there is a finite trigonometric sum

T([)= i Ckeih

k=-—-n

such that
|F(t) — T)) <&  whenever |t| < n.

It follows that

(" 1 [ —
Iww=gﬁlmwm=££mem—nmw

P n
< —

<o | [FolarselF,
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so that

IF| =
Since ¢ was arbitrary, F = 0,so thatg=cand f =0a.c. 1

Consequently, every function f in L*[—n, n] has a unique Fourier
series expansion

fl)= ; fme™

(in the meant). Here f(n) denotes the nth Fourier coefficient of f relative
to {e"}, i.e.,

fin) = %J_ f@e ™dt  (n=0,+1,+2,..).

By Parseval’s formula,

" _ PN
ﬁf'"if(t)lzdt =2 |Jof.

The mapping f — { f(n)} is a Hilbert space isomorphism between L[ - =, 7]
and /2.

There is a simple but useful extension of Parseval’s identity that is
worth mentioning. If f € L[ —n, ], let f be the Fourier transform of f:

J(x) = % Jj" fe ™dt (- < x < o).

Proposition 1. For every function f e L*[ —n, n] and every real number A,

™ s

[fn+ P = [ 1]

&

Proof. Put g(t) = f(t)e '*. Then
fin+ 4) = g(n)

t Pointwise convergence is of course much harder. A deep result of Carleson [1966] says that
the Fourier series of an L? function converges (to the function) pointwise almost everywhere.



10 Bases in Banach Spaces [Ch. 1

for every integer n. Since A is real, | f| = | g |, and the result follows
from Parseval’s identity applied to g. 1

As an illustration, let us choose f to be the constant function 1. A
simple calculation shows that

sin x

fe) =

for all real x. Setting A = t/n, where t is real and not an integral multiple
of n, we obtain the important identity

| d 1
sin?t _z;‘o (nm + t)*

Example 3. The space H?> (named after Hardy) consists of all functions f
analytic in the open unit disk (in the complex plane) whose Taylor coeffi-
cients are square-summable, i.e.,

f(z) = Z ¢,z with Y |e|? < .
n=0
The inner product of two functions f(z) = Y 2., a,2" and g(z) = Y2 ¢ b,2"
in H? is, by definition,
(f.9)= 2 ab

n=0

It is clear that H? can be identified with the (closed) subspace of L*[ —x, ]
spanned by the functions ™ with n = 0.

Let e,(z) = 2" for |z| < 1 (n =0, 1,2,...); then the ¢,’s form an ortho-
normal basis for H2. The natural mapping

(CosC15Casee )™ Y. Q2"
between I* and H? is a Hilbert space isomorphism.

Example 4. The space A? consists of all functions f that are analytic in



