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PREFACE

The Prague Conferences on Information Theory, Statistical Decision Functions,
and Random Processes have been organized every three years since 1956. During
the eighteen years of their existence the Prague Conference developed from a platform
for presenting results obtained by a small group of researchers into a probabilistic
congress, this being documented by the increasing number of participants as well as
of presented papers.

The importance of the Seventh Prague Conference has been emphasized by the
fact that this Conference was held jointly with the eight European Meeting of
Statisticians. This joint meeting was held from August 18 to 23, 1974 at the Technical
University of Prague. The Conference was organized by the Institute of Information
Theory and Automation of the Czechoslovak Academy of Sciences and was sponsored
by the Czechoslovak Academy of Sciences, by the Committee for the European
Region of the Institute of Mathematical Statistics, and by the International Asso-
ciation for Statistics in Physical Sciences.

Mor than 300 specialists from 25 countries participated in the Conference. In 57
sessions 164 papers (including 17 invited papers) were read, 128 of which are published
in the present two volumes of the Transactions of the Conference. Volume A includes
papers related mainly to probability theory and stochastic processes, whereas the
papers of Volume B concern mainly statistics and information theory.

It gives us a pleasure to express our gratitude to all who have contributed to the
success of the Conference, especially to the sponsoring institutions and their repre-
sentatives, and to those who read papers and delivered their manuscripts for publi-
cation in the Transactions.

Sincere thanks are due to Academician Jaroslav KoZednik, the scientific editor of
these volumes, to the editorial board the members of which read all published
manuscripts, and also to all employees of the Institute of Information Theory and
Automation who participated in the organization of the Conference.

The Organizing Committee is very sorry that the premature death of two of its
members, who participated in the preparation of this volume, prevented them from
seeing the fruits of their labour, Ing. Libor Kubat died on 28th December, 1975,
at the age of forty-six and Dr. Zdenék Koutsky died on 3rd June, 1976, at the age
of fifty-two. Ing Kubit, as the executive editor, and Dr. Koutsky, as one of the main
organizers, contributed invaluably to the success of this Conference, as well as of all
our previous conferences. The function of the executive editor of this volume was
assumed by Dr. Milan Ullrich.

ORGANIZING COMMITTEE
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EXPERIMENTAL DESIGN IN DECISION MODELS

HANS BANDEMER

FREIBERG

1. INTRODUCTION

The possibility of experimental design in a decision model complicates the structure
of the problem. When applying the theory of experimental design, as developed
by Wald [12], Blackwell [4], Le Cam [9], Kiefer [8] and others, to practical cases
and in evaluating optimal decision functions some problems arise not yet treated
sufficiently, as it seems. The present note contains some examples for such situations,
refers results for special cases and submits proposals for generalization.

2. DECISION MODEL

Let Z be a set of states of nature and B, a g-algebra of subsets from Z, forming
a measurable space [Z, B;]. Further let A be a set of actions a and [4,B,] a cor-
responding measurable space. On Z x A let be defined a loss function L(z, a), the
values of which are in the set G, of a measurable space [G,, B, ], Lis assumed to be
(Bz x B,, By)-measurable.

If it is possible, before the choice of an a € A, to realise a random element Y,
defined on [Gy, By| and taking values in C of a given [C. Bc], the distribution of
which depends on the true state z € Z of nature, then the decision may pass according
to a (Bc, B,)-measurable decision function d(Y). For Lis (B; x By, B,)-measurable,
L(z, d(Y)) becomes a random element. The distribution of ¥, on the condition that z
is the true state of nature, may be known. Then you can evaluate, if it exists, the
expectation of the random loss

(2.1) R(z, d(.)) = Ey,L(z, d(Y)),

K]
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the risk function. With a given set D of decision functions d € D the (statistical)
decision problem

(2.2) {4, D, R}

is defined.

3. EXPERIMENTAL DESIGN

If there is the possibility to choose the random element Y from a given set, then
the problem of experimental design arises, which is a decision problem, too, for
being a problem of choice,

Let {Y(v), ve V'} be a set of observable random elements, all defined on the same
measurable space [Gy, By]. The distributions of Y(v) depend on the true state z € Z
of nature, but the given set ¥, the experimental domain, does not.

DerINITION 1. Every arrangement

(3.1) Vo= (vy, .. 0,);

vieV, i=1,..,n; n=12,...,

of elements from Vis called exact design of size n.

It is not assumed that the v; in ¥, are all distinct from each other. The set of all v,
with fixed n is denoted by ¥*, furthermore let be ¥° = (J V" and By an appropriate

n=1
o-algebra of subsets from ¥, forming the measurable space [V*, Byw].

DEFINITION 2. The arrangement
(3.2) Y(V,) = (Y(v,), ..., Y(v,))

belonging to V, is called observation according to V.

Let Y(V,) be a mapping into [C(V,), B¢y, ] The dependence of the chosen a e A4
on the result y(V,) of Y(V,) is given by a (B, , B,)-measurable function, the decision
function d(Y(V,), ¥,). The set D(V,) of possible decision functions depends, in general,
on the chosen design ¥,

14



In practical cases the realization of observations accordingto different designs will
be connected with different expenses (time, money, etc.). Therefore it may be taken
for expedient to assume the loss function depending on V, explicitly. The loss
function Ly(z, a, V,) is then defined on Z x A x V. Usually it is assumed that the
expenses are superposed to the loss function L(z, a) and a cost function K(V,) is
looked for with

(3.3) Lo(z, a, V) = L(z, a) + K(V,)

(v. e. g Wald [12]). But it is not always expedient and possible to decompose decision
loss and cost in this manner, maybe even impossible to measure them in the same unit.

As in the preceding paragraph the risk function, on the supposition of its existence,
is formed by the expectation operator

(3-4) Ry(z, d(., V,), V,) = Ey . Li(z, d(Y(V,), V), V) -

Now the risk depends on both the choosable elements V, and d(., V).

In order to value the expediency and goodness of the decision (V, € V=, d(., V,) e
e D(V,)) and to get rid of the explicit dependence on the unknown state z the risk
function (3.4) (like (2.1) in the usual case) must be mapped into R* by a suitable
functional Q. In the case G, = R' Q is chosen usually as the expectation operator
with respect to an a-priori-distribution on Z (Bayes’ theory) or @ = max (which
leads to the minimax theory).

DEerINITION 3. The function

(3:5) Ryo(Ve d(-, V) = ORy(z,d(., V), V,)
is called Q-risk.

The aim of a decision theoretical treatment is the minimizing of the risk (3.5)
by choosing of an optimal design ¥, and an optimal decision function d(., V,).
Let be V* a subset of interest from V= : V® < V*.

DEFINITION 4. The design V,* and the decision function d*(.,V,") are called
(0, V*)-optimal, if

(3.6) Ryol Vi d (VD) = inf  Ryg(Vad(-, V).

VneV?,d(.,V,)eD(Vy)

The problem (3.6) is a basic one for statistical experimental design (v. also Bande-
mer [1], Bandemer/Jung [2]).

REMARKS. (i) The generalization of (3.1) to design measures (in the sense of Kiefer
[8]) suggests itself, but it is omitted here for brevity.

15



(i) Since Wald [12] the problem of experimental design is considered in the
sequential decision model, too. Some generalized formulation, with regard to esti-
mation in the regression model, may be found e.g. in Hohmana [6].

4. DECOMPOSITION THEOREMS

A difficulty of (3.6) lies in the necessity to evaluate V,* € ¥* and d*(., V;*) e D(V;)
simultaneously. In some applications the problem becomes more complicated,
when Z has a structure Z = P x H, too, where, e.g., Pis a set of probability measures
and H is a subspace of R* (as it is in the regression model, v. paragraph 5).

Therefore it will be interesting to investigate on what conditions a decision problem
of the form U = {Z, x Z,, D, x D,, R} can be decomposed into two partial
problems {Z,, D, R,} and {Z,, D,, R,}. For the case Q = max (i.e. the minimax

z

problem) Nather [10] proved a so-called decomposition theorem, which may be
quoted here for example.

TueoreM (Nither). If

(a) for each z, €Z, and each d, e D,, where R,(zy,d,) = R((zy, 25), (dy, d2)),
U, = {Z,, D,, R,} is a decision problem, for which a minimax strategy di(z;, d,)
exists,

(b) in the decision problem U, = {Z,, D,, R,}, where R,(z,, d,) = sup R((zy, z,),
(d3(z2> d3), d,)), exists a minimax strategy d¥, Z1eZ1

(c) in U, a maximal strategy z3 with respect to d% exists,
then (d}(z3, d3), d3) is minimax in U.

More special decomposition theorems are due to Richter [11].

5. EXPERIMENTAL DESIGN IN THE REGRESSION MODEL

On the probability space [G, B, P] a family of random variables Y(x) let be
defined, where x € ¥ and ¥ a bounded and closed subset of R*. The components x;
of x are the regressors and the expectation function E Y(x) = g(x), the existence of
which is presupposed, is called response surface. A problem of regression theory is
the estimation of the unknown response surface by means of a sample, the observation
vector ¥(V,) = (Y(x,), ..., ¥(x,)), where usually further informations are given,
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