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Preface

Elementary Linear Algebra with Applications is a basic introduction to the results and
techniques of linear algebra for students with only a good knowledge of high school
algebra. An acquaintance with linear algebra has long been a requirement for students
of science, mathematics, and computing science; it is now commonly required in other
areas such as management and economics. As a result, beginning linear algebra
courses often rival calculus in enrollment and include many students who are not
particularly mathematically inclined. Many of the present books on the subject, there-
fore, are so computationally oriented that the mathematics is all but ignored. This
orientation makes for dull teaching and has the effect of turning potential mathematics
majors away from the subject. This book aims at achieving a balance between com-
putational skills, theory, and applications of linear algebra while keeping the level
suitable for beginning students.

My goal in writing this book can be summed up in a quotation from Albert
Einstein: “Everything should be made as simple as possible, but not simpler.” Making
this material accessible to students does not necessarily mean lowering the level. The
following features help to make this text mathematically interesting and yet accessible
to the vast majority of nonmathematical students who take the course:

® Over 275 solved examples (not including applications) that are keyed to the
exercises;

¢
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PREFACE

® Presentation of techniques in examples, with an emphasis on concrete computa-
tions, to introduce methods later used in proofs (many of which are optional);

® Choice of following a rigorous treatment using optional proofs, or a methods
approach using the examples but omitting many of the proofs;

® Exercise sets beginning with routine problems and proceeding to more theoreti-
cal exercises, with answers to even-numbered computational exercises at the back of
the book;

® Wide variety of applications at the end of each chapter where linear algebra gives
new insight, rather than merely playing a descriptive role.

The tables of contents of all linear algebra texts are much the same because wide
agreement exists on the topics that should be included. Elementary Linear Algebra
with Applications is no exception, although I have included some special features.
First, the vector geometry (Chapter 4) can be omitted since many students get this
material elsewhere. Second, diagonalization of matrices (Chapter 7) may be covered

CHAPTER DEPENDENCIES
Chapter 1
Linear Equations
Chapter 2
Matrix Algebra
Chapter 3 I S Chapter 4
Determinants Vector Geometry
A
Chapter §
Vector Spaces
Chapter 6

Inner Products

‘ y

Chapter 7 Chapter 8
— Eigenvaluesand | — +| Linear
Diagonalization Transformations
Chapter 9

Linear Operators

— — This indicates that some reference is made but the chapter need not be covered.
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PREFACE v

prior to linear transformations, thus opening up the possibility of a one-semester
methods course (Chapters 1, 2, 3, 4, 5, 7). Finally, although most instructors will not
have much extra time, applications sections are included because they are useful
pedagogically and their location in the same chapter as the relevant linear algebra will
encourage the better students to browse.

Additional features include the following:

¢ Appendix on linear programming (requires only Chapter 1). This is a popular
option and is a natural extension of Gauss-Jordan elimination.

® Appendices on complex numbers and induction. Complex numbers are used in
the text to prove that eigenvalues of symmetric matrices are real.

® Emphasis on the algorithmic nature of several of the techniques.

® Flexibility in the ordering of chapters. In particular, Chapter 4 can be omitted
and eigenvalues and diagonalization can be treated before linear transformations.

® Solutions manual available to the instructor.
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CHAPTER 1

Systems
of

Linear
Equations

SECTION11 Wl INTRODUCTION

EXAMPLE 1

One of the great historical motivations for the development of mathematics has been
to find a way to analyze and solve practical problems. This need prompted the use of
numbers and of geometry, certainly two of the most basic mathematical systems.
Certain types of problems led naturally to systems of linear equations that, when
solved, gave useful practical information. Linear algebra arose from attempts to find
systematic methods for solving these systems, so it is natural to begin this book by
studying linear equations.

To see how systems of linear equations arise in practical situations, consider the
following example.

A charity wishes to endow a fund that will supply $50,000 per year for cancer
research. The charity has $480,000 and, for reasons of security, wants to invest it
with two banks, one paying 10% per year and the other paying 11%. The question is:
How much should be invested in each bank?

SOLUTION If x is the amount invested at 10% and y is the amount invested at 11%,

then x + y = 480,000 and the yearly interest is %x + %y. Hence x and y must
satisfy the conditions

x + y = 480,000
00
100" " 100° = 7
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SYSTEMS OF LINEAR EQUATIONS

If the first of these equations is multiplied by 10 and the second by 100, the
resulting equations are

10x + 10y = 4,800,000
10x + 11y = 5,000,000

Subtracting the first from the second gives y = 200,000, and therefore x =
280,000. O

This example typifies the way in which linear equations arise, and even the method
of solution is typical of the methods used in more general situations. Other examples
will differ from this in two ways: More than two variables will usually be needed,
and more than two equations will be found that these variables must satisfy.

If a, b, and c are real numbers, the graph of an equation of the form

ax + by = ¢

is a straight line (provided that a and b are not both zero). Accordingly, such an
equation is called a linear equation in the variables x and y. When only two or three
variables are present, they are usually called x, y, and z. However, it is often conven-
ient to write the variables as x;, x,, . . ., x,, particularly when more than three
variables are involved. An equation of the form

ax, +ay, +---+ax,=5b

is called a linear equation in the n variables x,, x, . . . , x,. Here a;, a, . ..,a,

- denote real numbers (called the coefficients of x,, X3, . . . , X, TEspectively) and b is

also a number (called the constant term of the equation). Hence
le - 3x2 + 5X3 = 7 a.l’ld
xl + X2 + X3 + X4 = 0

are both linear equations. Note that each variable in a linear equation occurs to the
first power only, so the following are not linear equations.

x2 4 3%, — 26, = 5

Il

Xy + X1Xy + ZX3 1

\/.;|+x2_X3

0
x+x-3=1

Consider the single linear equation 3x, + 2x, — x; = 1. A solution to this equation

5
is a triple of numbers s,, s,, 53, denoted | s, |, with the property that the equation is
$3
satisfied when the substitutions x; = s,, x, = s,, and x; = s, are made. For example,
1 2 1

—1 | and [ O | are solutions to this equation but | 0 | is not. Note that the order of
0 5 1

1
i
&
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1
the numbers s,, 55, 55 in a solution is important. For example, | 2 | is a solution to the
2 6
foregoing equation, whereas | 1 | is not a solution (even though it consists of the same
6 5
numbers in a different order). For this reason the notation | s, | denotes an ordered
53
triple of numbers, and two such triples are regarded as equal only when corresponding
entries are equal.

5y L
SH|1=14 means S = tl’ §y; = t2, §3 = I3
3 4
S
More generally, an ordered n-tuple -:Yz is an ordered sequence of n numbers
s’l
51, 82, . . . , S, (called the entries of the n-tuple). Two such n-tuples are defined to be
equal only when corresponding entries are equal.
8 15
fz = fz means s, = t, 8 =1b,...,5, =,
s’l zn
2 2 1 1
1 3 2 2. .
For example, 3 # 1 whereas =15 if and only if x = 5. The ordered
0 0 0 0

3-tuples are, of course, just the ordered triples discussed above, and ordered 2-tuples
are called ordered pairs. Incidentally, ordered n-tuples can also be written as rows.
Suppose a linear equation

ax; tay,+ - +ax,=b
R}

is given. An ordered n-tuple is called a solution to the equation if a,s, + a,s,

S”
+ -+ + a,s, = b—that s, if the equation is satisfied when the substitutions X, =
51, X2 = 8, . .., X, = s, are made. A finite collection of linear equations in the
variables x, x,, . . . , x, is called a system of linear equations in these variables. An

ordered n-tuple is called a solution to the system of equations if it is a solution to
every equation in the system. The system of two equations in two variables that arose

in Example 1 had a unique solution, [330000] However, other possibilities exist. A
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EXAMPLE 2

EXAMPLE 3

SYSTEMS OF LINEAR EQUATIONS

system may have no solution at all, or it may have an infinite family of solutions. For
example, the system x + y = 2, x + y = 3 has no solution, whereas Example 2
exhibits a system with infinitely many solutions. The aim in general is to solve the
system of linear equations—that is, to find all solutions to the system. This chapter is
devoted primarily to developing a systematic method for doing this.

t—s~1
Show that Lt ‘;+ 1 is a solution to the system
t
Xy — 2% + 3% +x, = =3
20 —x + 3x3 —xy = =3

for any values of s and ¢.

SOLUTION Simply substitute x; = ¢ — s — l,x, =t + s+ 1,x3 = s,andx, = ¢
in each equation.

X —20+3+tx=0C-s—-1)~-20+s+1D+3s+1r= -3
Uy~ + 3G - =20—-s-1)—-(@t+s+1D)+3s—-1t= -3
Because both equations are satisfied, it is a solution for all s and . O

The solutions given in Example 2 can be written as follows:
Xy =t—8§5— 1

Xp=1t+s+1
(s and ¢ arbitrary)
X3=S

X3 =1

This means that, for any choice of s and ¢, the values of x,, x,, x;, and x, given by
these equations will satisfy the equations. The quantities s and ¢ are called parame-
ters, and this set of solutions, described in this way, is said to be given in parametric
form. It turns out that solutions to systems of linear equations quite often appear in
this form and that such descriptions arise naturally. The following examples show how
this comes about in the simplest systems where only one equation is present.

Describe all solutions to 3x — y = 4 in parametric form.
SOLUTION The equation can be written in the form
y=3x—4

Hence, if ¢ denotes any number at all, we can quite arbitrarily set x = ¢ and then
obtain y = 3¢ — 4. This is clearly a solution to our equation for any value of 7. On
the other hand, every solution to 3x — y = 4 arises in this way (¢ is just the value
of x). Hence the set of all solutions can be described parametrically as
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[;] = [3t t_ 4] ¢ arbitrary

Note that there are infinitely many distinct solutions, one for each choice of the

parameter ?. ' .

It is important to realize that the solutions to 3x — y = 4 can be given in
parametric form in several ways. We found the foregoing solution by observing that
¥y = 3x — 4 and then choosing x = ¢, t a parameter. However, we could have found

x in terms of y:

o +4

X =

QO | »=

and then chosen y = s (s a parameter). Hence the solutions are
1
+ 4
= g(s ) s arbitrary
Y s

This is also a correct parametric representation of the solutions to 3x — y = 4.
In fact, the parameters are related by s = 3r — 4 (or ¢ = %(s + 4)). J

EXAMPLE4  Describe all solutions to 3x — y + 2z = 6 in parametric form.

SOLUTION  Solving the equation for y in terms of x and z, we gety = 3x + 2z — 6.
Then x and z can be arbitrarily chosen. If s and ¢ are arbitrary, then, setting x = s,
z = t, we get solutions

s
35 +2t— 6 s and ¢ arbitrary
t

Moreover, each solution arises in this way, so we have determined all solutions. Of
course we could have solved for x.

1
x=5(y—22+6)

Then, if we take y = p, z = ¢, the solutions are represented as follows:

1
3P~ 29 +6)
» p and g arbitrary
q
The same family of solutions can “look” quite different! I

When only two variables are involved, the solutions to systems of linear equations
can be described geometrically because the graph of a linear equation ax + by = ¢
is a straight line. Moreover, a point P(s, ¢) with coordinates s and ¢ lies on the line
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if and only if as + bt = c—that is, when l:s] is a solution to the equation. Hence

solutions ": to a system of linear equations correspond to the points P(s, ) that lie

on all the lines in question. In particular, if the system consists of just one equation
(as in Example 3) there must be infinitely many solutions because there are infinitely
many points on a line. If the system has two equations, there are three possibilities for
the corresponding straight lines.
1. They intersect in a single point. Then the system has a unique solution corre-
sponding to that point.
2. They are parallel (and distinct) and so do not intersect. Then the system has
no solution.
3. They are identical. Then the system has infinitely many solutions—one for
each point on the (common) line.
These three situations are illustrated in Figure 1.1. In each case the graphs of two
specific lines are plotted and the corresponding equations indicated. In the last case,
the equations are 3x — y = 4 (treated in Example 3) and —6x + 2y = —8, which
have identical graphs.

X

!
Unique Solution [%] No Solution Infinitely Many Solutions [3t - 4]

FIGURE 1.1

A similar situation occurs when three variables are present. The graph of an equa-

tion ax + by + cz = d can be shown to be a plane (provided not all of a, b, and ¢
r

are zero) and to consist of all points P(r, s, 1) in space such that | s | is a solution to
{

the equation. Hence, as we found for lines, this plane provides a “picture” of the set

of solutions of the equation. In particular, the solutions to a system of three linear

equations in three variables correspond to the points common to all three planes. The

same possibilities arise as before: namely, no solution, a unique solution, or infinitely

many solutions (see Figure 1.2). In fact, it is not difficult to show that one




